1. Public Key Cryptography
2. RSA system
 2.1 Efficiency: Repeated Squaring.
 2.2 Correctness: Fermat's Theorem.
 2.3 Construction.
3. Warnings.

Is public key crypto possible?

We don't really know. ...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to \((p - 1)(q - 1)\).
Compute d = e\(^{-1}\) \text{mod} \((p - 1)(q - 1)\).
Announce N=(p\cdot q) and e: K = (N, e) is my public key!

Encoding: \text{mod} (x^e, N).
Decoding: \text{mod} (y^d, N).
Does \(D(E(m)) = m^d \equiv m \text{ mod } N\)?
Yes!

1. Typically small, say e = 3.
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\text{gcd}(7, 60) = 1$.

\[
\text{gcd}(7, 60) = 7(0) + 60(1) = 60
\]

\[
7(1) + 60(0) = 7
\]

\[
7(-8) + 60(1) = 4
\]

\[
7(9) + 60(-1) = 3
\]

\[
7(-17) + 60(2) = 1
\]

Confirm: $-119 + 120 = 1$

\[d = e^{-1} = -17 = 43 \equiv (\text{mod } 60)\]

Recursive version.

```lisp
(define (power x y m)
  (if (= y 1)
      (mod x m)
      (let ((x-to-evened-y (power (square x) (/ y 2) m)))
        (if (evenp y)
            x-to-evened-y
            (mod (+ x x-to-evened-y) m))))
)
```

Claim: Program correctly computes x^y.

Base: $x^1 = x \pmod{m}$.

$$x^y = x^{2(\log_2 y)} \pmod{m} = (x^2)^{\log_2 y} \pmod{m}.$$

The program computes the last expression using a recursive call with x^2 and $y/2$.

Note: $y/2$ is integer division.

Encryption/Decryption Techniques.

Public Key: $(77, 7)$

Message Choices: $\{0, \ldots, 76\}$.

Message: 2!

\[E(2) = 2^7 \equiv 128 \pmod{77} = 51 \pmod{77}\]

\[D(51) = 51^{63} \pmod{77}\]

uh oh!

Obvious way: 43 multiplications. Ouch.

In general, $O(N)$ or $O(2^n)$ multiplications!

Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute $x^1, x^2, x^4,\ldots, x^{2^{\log y}}$.
2. Multiply together x^i where the $(\log i)$th bit of y (in binary) is 1.

Example: $43 = 101011$ in binary.

\[x^{11} = x^{2^5} x^3 x^1\]

Modular Exponentiation: $x^y \pmod{N}$. All n-bit numbers. Repeated Squaring:

\[O(n)\] multiplications.

\[O(n^2)\] time per multiplication.

Conclusion: $x^y \pmod{N}$ takes $O(n^2)$ time.

RSA is pretty fast.

Modular Exponentiation: $x^y \pmod{N}$. All n-bit numbers.

$O(n^2)$ time.

Remember RSA encoding/decoding!

\[E(m, (N,e)) = m^e \pmod{N}.
\]

\[D(m, (N,d)) = m^d \pmod{N}.
\]

For 512 bits, a few hundred million operations.

Easy, peasey.

Repeated squaring.

Notice: 43 = 32 + 8 + 2 + 1.

\[51^{43} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}\]

4 multiplications sort of...

Need to compute $51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1$?

\[51^1 = 51 \pmod{77}\]

\[51^2 = (51^1)^2 = 2601 \pmod{77} \equiv 60 \pmod{77}\]

\[51^4 = (51^2)^2 = 60^2 \pmod{77} \equiv 3600 \pmod{77} \equiv 58 \pmod{77}\]

\[51^8 = 51^4 \cdot 51^4 = 3600 \cdot 3600 \pmod{77} \equiv 3664 \pmod{77} \equiv 53 \pmod{77}\]

\[51^{16} = (51^8)^2 \pmod{77} = 53 \cdot 53 = 2809 \pmod{77} \equiv 37 \pmod{77}\]

\[51^{32} = (51^{16})^2 \pmod{77} \equiv 37 \cdot 37 \equiv 1369 \pmod{77} \equiv 60 \pmod{77}\]

5 more multiplications.

\[51^{43} = 51^1 \cdot 51^2 \cdot 51^4 \cdot 51^8 \cdot 51^16 \cdot 51^{32} \pmod{77}\]

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.
Always decode correctly? (cont.)

Fermat's Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[
 a^{p-1} \equiv 1 \pmod{p}.
\]

Lemma 1: For any prime \(p \) and any \(a, b \),
\[
 a^{1+b(p-1)} \equiv a \pmod{p}.
\]
Proof: If \(a \equiv 0 \pmod{p} \), of course.
Otherwise
\[
 a^{1+b(p-1)} = a^1 \cdot (a^p)^b = a \cdot (1)^b = a \pmod{p}.
\]

...Decoding correctness...

Lemma 1: For any prime \(p \) and any \(a, b \),
\[
 a^{1+b(p-1)} = a \pmod{p}.
\]
Lemma 2: For any two different primes \(p, q \) and any \(x, k \),
\[
 x^{1+k(p-1)(q-1)} = x \pmod{pq}.
\]
Let \(a = x, b = k(p-1) \) and apply Lemma 1 with modulus \(q \).
\[
 x^{1+k(p-1)(q-1)} = x \pmod{q}.
\]
Let \(a = x, b = k(q-1) \) and apply Lemma 1 with modulus \(p \).
\[
 x^{1+k(p-1)(q-1)} = x \pmod{p}.
\]
\[
 x^{1+k(p-1)(q-1)} - x = \text{multiple of } p \text{ and } q.
\]
\[
 x^{1+k(p-1)(q-1)} - x \equiv 0 \pmod{pq} \implies x^{1+k(p-1)(q-1)} = x \pmod{pq}.
\]

Correct decoding...

Fermat's Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[
 a^{p-1} \equiv 1 \pmod{p}.
\]
Proof: Consider \(S = \{a, 1 \ldots a \pmod{p-1}\} \).
All different modulo \(p \) since \(a \) has an inverse modulo \(p \).
\(S \) contains representative of \(\{1 \ldots p-1\} \) modulo \(p \).
\[
 (a \pmod{1} \cdot a \pmod{2} \cdot (a \pmod{p-1}) = 1 \ldots (p-1) \pmod{p}.
\]
Since multiplication is commutative.
\[
 a^{p-1} \cdot (1 \ldots (p-1)) \equiv (1 \ldots (p-1)) \pmod{p}.
\]
Each of \(2 \ldots (p-1) \) has an inverse modulo \(p \), solve to get...
\[
 a^{p-1} \equiv 1 \pmod{p}.
\]

RSA decodes correctly...

Lemma 2: For any two different primes \(p, q \) and any \(x, k \),
\[
 x^{1+k(p-1)(q-1)} = x \pmod{pq}.
\]
Theorem: RSA correctly decodes!
Recall
\[
 D(E(x)) = (x^e)^d = x^{ed} \equiv x \pmod{pq}.
\]
where \(ed \equiv 1 \pmod{(p-1)(q-1)} \implies ed = 1 + k(p-1)(q-1) \)
\[
 x^{ed} = x^{k(p-1)(q-1)+1} = x \pmod{pq}.
\]
Construction of keys...

1. Find large (100 digit) primes \(p \) and \(q \).

 Prime Number Theorem: \(\pi(N) \) number of primes less than \(N \).
 For all \(N \geq 17 \):
 \[\pi(N) \geq N / \ln N. \]
 Choosing randomly gives approximately \(1 / (\ln N) \) chance of number being a prime. (How do you tell if it is prime? ...)

 For 1024 bit number, 1 in 710 is prime.

2. Choose \(e \) with gcd\((e, (p-1)(q-1))-1\) = 1.

 Use gcd algorithm to test.

3. Find inverse \(d \) of \(e \) modulo \((p-1)(q-1)\).

 Use extended gcd algorithm.

 All steps are polynomial in \(O(\log N) \), the number of bits.

Signatures using RSA.

\[
\begin{align*}
[&C, S_v(C)] \\
C &= E(S_v(C), k_v) \\
[C, S_v(C)] &= [C, S_v(C)]
\end{align*}
\]

Amazon Certificate Authority: Verisign, GoDaddy, DigiNotar,

Verisign's key: \(K_v = (N, e) \) and \(k_v = d \) (\(N = pq \)).

Browser “knows” Verisign’s public key: \(K_v \).

Verisign signature of C: \(S_v(C) \): \(D(C, k_v) = C^{de} \mod N \).

Browser receives: \([C, y] \)

Checks \(E(y, K_v) = C \).

\(E(S_v(C), k_v) = (S_v(C))^d = (C^{de})^d = C^{d^2} = C \mod N \)

Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Security of RSA.

Security?

1. Alice knows \(p \) and \(q \).

2. Bob only knows, \(N(= pq) \), and \(e \).

 Does not know, for example, \(d \) or factorization of \(N \).

3. I don’t know how to break this scheme without factoring \(N \).

 No one I know or have heard of admits to knowing how to factor \(N \).

 Breaking in general sense \(\implies \) factoring algorithm.

Public Key Cryptography:

\(D(E(m, K), k) = (m^e)^d \mod N = m \).

Signature scheme:

\(E(D(C, K), C) = (C^d)^e \mod N = C \)

RSA

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001...Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?
Summary.

Public-Key Encryption.

RSA Scheme:
\[N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}. \]
\[E(x) = x^e \pmod{N}. \]
\[D(y) = y^d \pmod{N}. \]
Repeated Squaring \(\Rightarrow\) efficiency.
Fermat's Theorem \(\Rightarrow\) correctness.
Good for Encryption and Signature Schemes.