Today

Finish Euclid.

Bijection/CRT/Isomorphism.

Fermat’s Little Theorem.

Review for Midterm.
Today

Finish Euclid.
Today

Finish Euclid.
Bijection/CRT/Isomorphism.
Today

Finish Euclid.
Bijection/CRT/Isomorphism.
Fermat’s Little Theorem.
Today

Finish Euclid.
Bijection/CRT/Isomorphism.
Fermat’s Little Theorem.
Review for Midterm.
Finding an inverse?

We showed how to efficiently tell if there is an inverse.
Finding an inverse?

We showed how to efficiently tell if there is an inverse.
Extend euclid to find inverse.
Euclid’s GCD algorithm.

```
(define (euclid x y)
  (if (= y 0)
      x
      (euclid y (mod x y)))))
```
Euclid’s GCD algorithm.

\[
\text{(define (euclid x y)}
\text{(if (= y 0) x)}
\text{(euclid y (mod x y)))}
\]

Computes the gcd\((x, y)\) in \(O(n)\) divisions. (Remember \(n = \log_2 x\).)
Euclid’s GCD algorithm.

(define (euclid x y)
 (if (= y 0)
 x
 (euclid y (mod x y))))

Computes the gcd(x, y) in $O(n)$ divisions. (Remember $n = \log_2 x$.)
For x and m, if $\text{gcd}(x, m) = 1$ then x has an inverse modulo m.
Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.
Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse. How do we find a multiplicative inverse?
Euclid’s Extended GCD Theorem: For any x, y there are integers a, b such that

$$ax + by$$
Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers a, b such that
\[ax + by = d \]
where $d = \gcd(x, y)$.

Example: For $x = 12$ and $y = 35$, \(\gcd(12, 35) = 1\).

\[
3 \cdot 12 + (-1) \cdot 35 = 1
\]

So $a = 3$ and $b = -1$.

The multiplicative inverse of 12 ($\mod 35$) is 3.

Check: $3 \cdot (12) = 36 = 1 \mod 35$.

5/43
Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers a, b such that

$$ax + by = d$$

where $d = \text{gcd}(x, y)$.

“Make d out of sum of multiples of x and y.”
Euclid’s Extended GCD Theorem: For any \(x, y \) there are integers \(a, b \) such that
\[
ax + by = d \quad \text{where} \quad d = \gcd(x, y).
\]

“Make \(d \) out of sum of multiples of \(x \) and \(y \).”
What is multiplicative inverse of \(x \) modulo \(m \)?
Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers a, b such that

$$ax + by = d \quad \text{where } d = \gcd(x, y).$$

“Make d out of sum of multiples of x and y.”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when $\gcd(x, m) = 1$.
Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers a, b such that

$$ax + by = d$$

where $d = \gcd(x, y)$.

“Make d out of sum of multiples of x and y.”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when $\gcd(x, m) = 1$.

$$ax + bm = 1$$
Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers a, b such that

$$ax + by = d \quad \text{where } d = \gcd(x, y).$$

“Make d out of sum of multiples of x and y.”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when $\gcd(x, m) = 1$.

$$ax + bm = 1$$

$$ax \equiv 1 - bm \equiv 1 \pmod{m}.$$
Extended GCD

Euclid’s Extended GCD Theorem: For any \(x, y \) there are integers \(a, b \) such that
\[
ax + by = d \quad \text{where } d = \gcd(x, y).
\]

“Make \(d \) out of sum of multiples of \(x \) and \(y \).”

What is multiplicative inverse of \(x \) modulo \(m \)?

By extended GCD theorem, when \(\gcd(x, m) = 1 \).

\[
ax + bm = 1
\]
\[
ax \equiv 1 - bm \equiv 1 \pmod{m}.
\]

So \(a \) multiplicative inverse of \(x \) \(\pmod{m} \)!!

Example: For \(x = 12 \) and \(y = 35 \), \(\gcd(12, 35) = 1 \).

\[
3 \cdot 12 + (-1) \cdot 35 = 1.
\]

\(a = 3 \) and \(b = -1 \).

The multiplicative inverse of 12 \(\pmod{35} \) is 3.

Check: \(3 \cdot 12 \equiv 1 \pmod{35} \).
Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers a, b such that

$$ax + by = d$$

where $d = \text{gcd}(x, y)$.

“Make d out of sum of multiples of x and y.”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when $\text{gcd}(x, m) = 1$.

$$ax + bm = 1$$

$$ax \equiv 1 - bm \equiv 1 \pmod{m}.$$

So a multiplicative inverse of $x \pmod{m}$!!

Example: For $x = 12$ and $y = 35$, $\text{gcd}(12, 35) = 1$.
Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers a, b such that
$$ax + by = d$$
where $d = \gcd(x, y)$.

“Make d out of sum of multiples of x and y.”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when $\gcd(x, m) = 1$.

$$ax + bm = 1$$
$$ax \equiv 1 - bm \equiv 1 \pmod{m}.$$

So a multiplicative inverse of x ($\mod m$)!!

Example: For $x = 12$ and $y = 35$, $\gcd(12, 35) = 1$.

$$(3)12 + (-1)35 = 1.$$
Extended GCD

Euclid’s Extended GCD Theorem: For any \(x, y \) there are integers \(a, b \) such that
\[
ax + by = d \quad \text{where } d = \gcd(x, y).
\]

“Make \(d \) out of sum of multiples of \(x \) and \(y \).”

What is multiplicative inverse of \(x \) modulo \(m \)?

By extended GCD theorem, when \(\gcd(x, m) = 1 \).

\[
ax + bm = 1
\]
\[
ax \equiv 1 - bm \equiv 1 \pmod{m}.
\]

So \(a \) multiplicative inverse of \(x \) \((\text{mod } m)!!

Example: For \(x = 12 \) and \(y = 35 \), \(\gcd(12, 35) = 1 \).

\[
(3)12 + (-1)35 = 1.
\]

\(a = 3 \) and \(b = -1 \).
Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers a, b such that

$$ax + by = d$$

where $d = \gcd(x, y)$.

“Make d out of sum of multiples of x and y.”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when $\gcd(x, m) = 1$.

$$ax + bm = 1$$

$$ax \equiv 1 \equiv 1 \pmod{m}.$$

So a multiplicative inverse of x (mod m)!!

Example: For $x = 12$ and $y = 35$, $\gcd(12, 35) = 1$.

$$(3)12 + (−1)35 = 1.$$

$a = 3$ and $b = −1$.

The multiplicative inverse of 12 (mod 35) is 3.
Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers a, b such that

$$ax + by = d$$

where $d = \gcd(x, y)$.

“Make d out of sum of multiples of x and y.”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when $\gcd(x, m) = 1$.

$$ax + bm = 1$$

$$ax \equiv 1 - bm \equiv 1 \pmod{m}.$$

So a multiplicative inverse of $x \pmod{m}$!!

Example: For $x = 12$ and $y = 35$, $\gcd(12, 35) = 1$.

$$(3)12 + (-1)35 = 1.$$

$a = 3$ and $b = -1$.

The multiplicative inverse of 12 $\pmod{35}$ is 3.

Check: $3(12)$
Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers a, b such that

$$ax + by = d$$

where $d = \gcd(x, y)$.

“Make d out of sum of multiples of x and y.”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when $\gcd(x, m) = 1$.

$$ax + bm = 1$$

$$ax \equiv 1 - bm \equiv 1 \pmod{m}.$$

So a multiplicative inverse of $x \pmod{m}$!!

Example: For $x = 12$ and $y = 35$, $\gcd(12, 35) = 1$.

$$(3)12 + (-1)35 = 1.$$

$a = 3$ and $b = -1$.

The multiplicative inverse of $12 \pmod{35}$ is 3.

Check: $3(12) = 36$
Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers a, b such that

$$ax + by = d$$

where $d = \text{gcd}(x, y)$.

“Make d out of sum of multiples of x and y.”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when $\text{gcd}(x, m) = 1$.

$$ax + bm = 1$$

$$ax \equiv 1 \pmod{m}.$$

So a multiplicative inverse of x (mod m)!!

Example: For $x = 12$ and $y = 35$, $\text{gcd}(12, 35) = 1$.

$$(3)12 + (-1)35 = 1.$$

$a = 3$ and $b = -1$.

The multiplicative inverse of 12 (mod 35) is 3.

Check: $3(12) = 36 = 1 \pmod{35}$.
Make d out of multiples of x and y..?

\[\text{gcd}(35,12) \]

How did gcd get 11 from 35 and 12?

\[35 - \left\lfloor \frac{35}{12} \right\rfloor \cdot 12 = 35 - (2) \cdot 12 = 11 \]

How does gcd get 1 from 12 and 11?

\[12 - \left\lfloor \frac{12}{11} \right\rfloor \cdot 11 = 12 - (1) \cdot 11 = 1 \]

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.

\[1 = 12 - (1) \cdot 11 \]

Get 11 from 35 and 12 and plugin....

Simplify.

\[a = 3 \quad \text{and} \quad b = -1. \]
Make d out of multiples of x and y..?

$$\text{gcd}(35, 12)$$
$$\text{gcd}(12, 11) \;; \; \text{gcd}(12, 35 \% 12)$$
Make \(d \) out of multiples of \(x \) and \(y \)...

\[
\text{gcd}(35, 12) \\
gcd(12, 11) ;; \quad \text{gcd}(12, 35 \mod 12) \\
gcd(11, 1) ;; \quad \text{gcd}(11, 12 \mod 11)
\]
Make d out of multiples of x and y..?

\[
\gcd(35, 12) \\
\gcd(12, 11) ;; \gcd(12, 35 \% 12) \\
\gcd(11, 1) ;; \gcd(11, 12 \% 11) \\
\gcd(1, 0) \\
1
\]
Make d out of multiples of x and y..?

\[
gcd(35, 12) \\
gcd(12, 11) ;; \ gcd(12, 35 \mod 12) \\
gcd(11, 1) ;; \ gcd(11, 12 \mod 11) \\
gcd(1, 0) \\
1
\]

How did gcd get 11 from 35 and 12?
Make \(d \) out of multiples of \(x \) and \(y \)?

\[
gcd(35, 12) \\
gcd(12, 11) ;; \gcd(12, 35 \mod 12) \\
gcd(11, 1) ;; \gcd(11, 12 \mod 11) \\
gcd(1, 0) \\
1
\]

How did \(\gcd \) get 11 from 35 and 12?
\[
35 - \left\lfloor \frac{35}{12} \right\rfloor 12 = 35 - (2)12 = 11
\]
Make \(d \) out of multiples of \(x \) and \(y \)...

\[
\begin{align*}
gcd(35, 12) \\
gcd(12, 11) \quad ;; \quad gcd(12, 35 \% 12) \\
gcd(11, 1) \quad ;; \quad gcd(11, 12 \% 11) \\
gcd(1, 0) \\
1
\end{align*}
\]

How did \(gcd \) get 11 from 35 and 12?
\[
35 - \left\lfloor \frac{35}{12} \right\rfloor 12 = 35 - (2)12 = 11
\]

How does \(gcd \) get 1 from 12 and 11?
Make d out of multiples of x and y..?

$$\text{gcd}(35, 12)$$
$$\text{gcd}(12, 11) \;;\; \text{gcd}(12, 35\%12)$$
$$\text{gcd}(11, 1) \;;\; \text{gcd}(11, 12\%11)$$
$$\text{gcd}(1, 0)$$
$$1$$

How did gcd get 11 from 35 and 12?
$$35 - \left\lfloor \frac{35}{12} \right\rfloor 12 = 35 - (2)12 = 11$$

How does gcd get 1 from 12 and 11?
$$12 - \left\lfloor \frac{12}{11} \right\rfloor 11 = 12 - (1)11 = 1$$
Make d out of multiples of x and y..?

\[
\gcd(35, 12) \\
\gcd(12, 11) \;; \gcd(12, 35 \% 12) \\
\gcd(11, 1) \;; \gcd(11, 12 \% 11) \\
\gcd(1, 0) \\
1
\]

How did \gcd get 11 from 35 and 12?
\[
35 - \left\lfloor \frac{35}{12} \right\rfloor 12 = 35 - (2)12 = 11
\]

How does \gcd get 1 from 12 and 11?
\[
12 - \left\lfloor \frac{12}{11} \right\rfloor 11 = 12 - (1)11 = 1
\]

Algorithm finally returns 1.
Make d out of multiples of x and y..?

\[
\begin{align*}
gcd(35, 12) \\
gcd(12, 11) & ;; gcd(12, 35 \% 12) \\
gcd(11, 1) & ;; gcd(11, 12 \% 11) \\
gcd(1, 0) & \\
1
\end{align*}
\]

How did gcd get 11 from 35 and 12?
\[
35 - \left\lfloor \frac{35}{12} \right\rfloor 12 = 35 - (2)12 = 11
\]

How does gcd get 1 from 12 and 11?
\[
12 - \left\lfloor \frac{12}{11} \right\rfloor 11 = 12 - (1)11 = 1
\]

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?
Make \(d \) out of multiples of \(x \) and \(y \)..?

\[
gcd(35, 12) \\
gcd(12, 11) ;; \gcd(12, 35\%12) \\
gcd(11, 1) ;; \gcd(11, 12\%11) \\
gcd(1, 0) \\
1
\]

How did \(\gcd \) get 11 from 35 and 12?
\[
35 - \left\lfloor \frac{35}{12} \right\rfloor \cdot 12 = 35 - (2)12 = 11
\]

How does \(\gcd \) get 1 from 12 and 11?
\[
12 - \left\lfloor \frac{12}{11} \right\rfloor \cdot 11 = 12 - (1)11 = 1
\]

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?
Get 1 from 12 and 11.
Make d out of multiples of x and y..?

$$\text{gcd}(35, 12)$$
$$\text{gcd}(12, 11) ;; \text{gcd}(12, 35 \mod 12)$$
$$\text{gcd}(11, 1) ;; \text{gcd}(11, 12 \mod 11)$$
$$\text{gcd}(1, 0)$$
$$1$$

How did gcd get 11 from 35 and 12?
$$35 - \left\lfloor \frac{35}{12} \right\rfloor 12 = 35 - (2)12 = 11$$

How does gcd get 1 from 12 and 11?
$$12 - \left\lfloor \frac{12}{11} \right\rfloor 11 = 12 - (1)11 = 1$$

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
$$1 = 12 - (1)11$$
Make d out of multiples of x and y..?

\[
gcd(35, 12) \\
gcd(12, 11) ;; gcd(12, 35 \% 12) \\
gcd(11, 1) ;; gcd(11, 12 \% 11) \\
gcd(1, 0) \\
\]

1

How did gcd get 11 from 35 and 12?
\[
35 - \left\lfloor \frac{35}{12} \right\rfloor 12 = 35 - (2)12 = 11
\]

How does gcd get 1 from 12 and 11?
\[
12 - \left\lfloor \frac{12}{11} \right\rfloor 11 = 12 - (1)11 = 1
\]

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
\[
1 = 12 - (1)11 = 12 - (1)(35 - (2)12)
\]

Get 11 from 35 and 12 and plugin....
Make d out of multiples of x and y..?

\[
gcd(35, 12) \\
gcd(12, 11) ;; gcd(12, 35 \% 12) \\
gcd(11, 1) ;; gcd(11, 12 \% 11) \\
gcd(1, 0) \\
1
\]

How did gcd get 11 from 35 and 12?
\[
35 - \left\lfloor \frac{35}{12} \right\rfloor 12 = 35 - (2)12 = 11
\]

How does gcd get 1 from 12 and 11?
\[
12 - \left\lfloor \frac{12}{11} \right\rfloor 11 = 12 - (1)11 = 1
\]

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
\[
1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35
\]

Get 11 from 35 and 12 and plugin.... Simplify.
Make d out of multiples of x and y..?

```plaintext
gcd(35, 12)
gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1, 0)
    1
```

How did gcd get 11 from 35 and 12?

$$35 - \left\lfloor \frac{35}{12} \right\rfloor 12 = 35 - (2)12 = 11$$

How does gcd get 1 from 12 and 11?

$$12 - \left\lfloor \frac{12}{11} \right\rfloor 11 = 12 - (1)11 = 1$$

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.

$$1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35$$

Get 11 from 35 and 12 and plugin.... Simplify.
Make \(d \) out of multiples of \(x \) and \(y \)\.?

\[
\begin{align*}
gcd(35, 12) \\
gcd(12, 11) ;; gcd(12, 35 \% 12) \\
gcd(11, 1) ;; gcd(11, 12 \% 11) \\
gcd(1, 0) \\
1
\end{align*}
\]

How did \(\gcd \) get 11 from 35 and 12?
\[
35 - \left\lfloor \frac{35}{12} \right\rfloor 12 = 35 - (2)12 = 11
\]

How does \(\gcd \) get 1 from 12 and 11?
\[
12 - \left\lfloor \frac{12}{11} \right\rfloor 11 = 12 - (1)11 = 1
\]

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
\[
1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35
\]

Get 11 from 35 and 12 and plugin.... Simplify. \(a = 3 \) and \(b = -1 \).
Extended GCD Algorithm.

\[
\text{ext-gcd}(x, y)
\]
\[
\text{if } y = 0 \text{ then return }(x, 1, 0)
\]
\[
\text{else}
\]
\[
(d, a, b) := \text{ext-gcd}(y, \text{mod}(x, y))
\]
\[
\text{return } (d, b, a - \text{floor}(x/y) \ast b)
\]
Extended GCD Algorithm.

\[
\text{ext-gcd}(x, y) \\
\quad \text{if } y = 0 \text{ then return }(x, 1, 0) \\
\quad \text{else} \\
\quad \quad (d, a, b) := \text{ext-gcd}(y, \text{mod}(x, y)) \\
\quad \quad \text{return } (d, b, a - \text{floor}(x/y) * b)
\]

Claim: Returns \((d, a, b)\): \(d = \gcd(a, b)\) and \(d = ax + by\).
Extended GCD Algorithm.

\[
\text{ext-gcd}(x, y)
\]

\[
\begin{align*}
\text{if } y &= 0 \text{ then return } (x, 1, 0) \\
\text{else} \\
(d, a, b) &= \text{ext-gcd}(y, \text{mod}(x, y)) \\
\text{return } (d, b, a - \text{floor}(x/y) \times b)
\end{align*}
\]

Claim: Returns \((d, a, b)\): \(d = \gcd(a, b)\) and \(d = ax + by\).

Example:

\[
\text{ext-gcd}(35, 12)
\]

\[
\text{ext-gcd}(12, 11) \\
\text{ext-gcd}(11, 1) \\
\text{ext-gcd}(1, 0)
\]

\[
\text{return } (1, 1, 0) \quad \text{;; } 1 = (1)1 + (0)0
\]

\[
\text{return } (1, 0, 1) \quad \text{;; } 1 = (0)11 + (1)1
\]

\[
\text{return } (1, 1, -1) \quad \text{;; } 1 = (1)12 + (-1)11
\]

\[
\text{return } (1, -1, 3) \quad \text{;; } 1 = (-1)35 + (3)12
\]
Extended GCD Algorithm.

ext-gcd(x, y)
if y = 0 then return(x, 1, 0)
else
 (d, a, b) := ext-gcd(y, \text{mod}(x, y))
 return (d, b, a - \text{floor}(x/y) \times b)

Claim: Returns (d, a, b): $d = \text{gcd}(a, b)$ and $d = ax + by$.
Example:

ext-gcd(35, 12)
 ext-gcd(12, 11)
Extended GCD Algorithm.

\[\text{ext-gcd}(x, y) \]
\[\quad \text{if } y = 0 \text{ then return } (x, 1, 0) \]
\[\quad \text{else} \]
\[\quad \quad (d, a, b) := \text{ext-gcd}(y, \text{mod}(x, y)) \]
\[\quad \quad \text{return } (d, b, a - \text{floor}(x/y) \cdot b) \]

Claim: Returns \((d, a, b)\): \(d = \gcd(a, b)\) and \(d = ax + by\).

Example:

\[\text{ext-gcd}(35, 12) \]
\[\quad \text{ext-gcd}(12, 11) \]
\[\quad \text{ext-gcd}(11, 1) \]
Extended GCD Algorithm.

\[\text{ext-gcd}(x, y) \]
\[
\begin{align*}
\text{if } y &= 0 \text{ then return}(x, 1, 0) \\
\text{else} \\
(d, a, b) &= \text{ext-gcd}(y, \text{mod}(x, y)) \\
\text{return } (d, b, a - \text{floor}(x/y) \times b)
\end{align*}
\]

Claim: Returns \((d, a, b)\): \(d = \gcd(a, b)\) and \(d = ax + by\).

Example:

\[
\begin{align*}
\text{ext-gcd}(35, 12) \\
\text{ext-gcd}(12, 11) \\
\text{ext-gcd}(11, 1) \\
\text{ext-gcd}(1, 0)
\end{align*}
\]
Extended GCD Algorithm.

\[
ext\text{-gcd}(x,y)\\ \text{if } y = 0 \text{ then return }(x, 1, 0)\\ \text{else}\\ \quad (d, a, b) := \text{ext-gcd}(y, \text{mod}(x,y))\\ \quad \text{return } (d, b, a - \text{floor}(x/y) \ast b)\\\]

Claim: Returns \((d, a, b)\): \(d = \gcd(a, b)\) and \(d = ax + by\).
Example: \(a - \lfloor x/y \rfloor \cdot b = \)

\[
ext\text{-gcd}(35,12)\\ \text{ext-gcd}(12, 11)\\ \text{ext-gcd}(11, 1)\\ \text{ext-gcd}(1,0)\\ \text{return } (1,1,0) ;; 1 = (1)1 + (0)0\]
Extended GCD Algorithm.

\[
\text{ext-gcd}(x, y)
\]

\[
\begin{aligned}
\text{if } y = 0 	ext{ then return } (x, 1, 0) \\
\text{else}
\quad (d, a, b) := \text{ext-gcd}(y, \text{mod}(x, y)) \\
\quad \text{return } (d, b, a - \text{floor}(x/y) \times b)
\end{aligned}
\]

Claim: Returns \((d, a, b)\): \(d = \text{gcd}(a, b)\) and \(d = ax + by\).

Example: \(a - \lfloor x/y \rfloor \cdot b = 1 - \lfloor 11/1 \rfloor \cdot 0 = 1\)

\[
\begin{aligned}
\text{ext-gcd}(35, 12) \\
\quad \text{ext-gcd}(12, 11) \\
\quad \quad \text{ext-gcd}(11, 1) \\
\quad \quad \quad \text{ext-gcd}(1, 0) \\
\quad \quad \quad \text{return } (1, 1, 0) ;; 1 = (1)1 + (0)0 \\
\quad \quad \text{return } (1, 0, 1) ;; 1 = (0)11 + (1)1
\end{aligned}
\]
Extended GCD Algorithm.

\[
\text{ext-gcd}(x, y) \quad \begin{align*}
\text{if } y &= 0 \text{ then return } (x, 1, 0) \\
\text{else} \\
(d, a, b) &= \text{ ext-gcd}(y, \text{ mod}(x, y)) \\
\text{return } (d, b, a - \text{ floor}(x/y) \times b)
\end{align*}
\]

Claim: Returns \((d, a, b)\): \(d = gcd(a, b)\) and \(d = ax + by\).

Example: \(a - \lfloor x/y \rfloor \cdot b = 0 - \lfloor 12/11 \rfloor \cdot 1 = -1\)

\[
\begin{align*}
\text{ext-gcd}(35, 12) \\
&\quad \text{ext-gcd}(12, 11) \\
&\quad \quad \text{ext-gcd}(11, 1) \\
&\quad \quad \quad \text{ext-gcd}(1, 0) \\
&\quad \quad \quad \quad \text{return } (1, 1, 0) \quad ;; 1 = (1)1 + (0)0 \\
&\quad \quad \quad \quad \text{return } (1, 0, 1) \quad ;; 1 = (0)11 + (1)1 \\
&\quad \quad \quad \quad \text{return } (1, 1, -1) \quad ;; 1 = (1)12 + (-1)11
\end{align*}
\]
Extended GCD Algorithm.

\[
\text{ext-gcd}(x,y) \\
\quad \text{if } y = 0 \text{ then return } (x, 1, 0) \\
\quad \text{else} \\
\quad \quad (d, a, b) := \text{ext-gcd}(y, \text{mod}(x,y)) \\
\quad \quad \text{return } (d, b, a - \text{floor}(x/y) \times b)
\]

Claim: Returns \((d, a, b)\): \(d = \gcd(a, b)\) and \(d = ax + by\).

Example: \(a - \lfloor x/y \rfloor \cdot b = 1 - \lfloor 35/12 \rfloor \cdot (-1) = 3\)

\[
\text{ext-gcd}(35,12) \\
\text{ext-gcd}(12, 11) \\
\text{ext-gcd}(11, 1) \\
\text{ext-gcd}(1, 0) \\
\text{return } (1,1,0) ;; 1 = (1)1 + (0)0 \\
\text{return } (1,0,1) ;; 1 = (0)11 + (1)1 \\
\text{return } (1,1,-1) ;; 1 = (1)12 + (-1)11 \\
\text{return } (1,-1,3) ;; 1 = (-1)35 + (3)12
\]
Extended GCD Algorithm.

\[\text{ext-gcd}(x, y) \]

\begin{verbatim}
 if y = 0 then return(x, 1, 0)
 else
 (d, a, b) := ext-gcd(y, mod(x,y))
 return (d, b, a - floor(x/y) * b)
\end{verbatim}

Claim: Returns \((d, a, b)\): \(d = \gcd(a, b)\) and \(d = ax + by\).

Example:

\[\text{ext-gcd}(35, 12) \]
\[\text{ext-gcd}(12, 11) \]
\[\text{ext-gcd}(11, 1) \]
\[\text{ext-gcd}(1, 0) \]

\[
\begin{align*}
\text{return } (1,1,0) & ;; 1 = (1)1 + (0)0 \\
\text{return } (1,0,1) & ;; 1 = (0)11 + (1)1 \\
\text{return } (1,1,-1) & ;; 1 = (1)12 + (-1)11 \\
\text{return } (1,-1, 3) & ;; 1 = (-1)35 + (3)12
\end{align*}
\]
Extended GCD Algorithm.

\[
\text{ext-gcd}(x, y) \\
\quad \text{if } y = 0 \text{ then return } (x, 1, 0) \\
\quad \text{else} \\
\quad \quad (d, a, b) := \text{ext-gcd}(y, \text{mod}(x, y)) \\
\quad \quad \text{return } (d, b, a - \text{floor}(x/y) \times b)
\]
Extended GCD Algorithm.

ext-gcd(x, y)
 if y = 0 then return(x, 1, 0)
 else
 (d, a, b) := ext-gcd(y, mod(x, y))
 return (d, b, a - floor(x/y) * b)

Theorem: Returns (d, a, b), where $d = \gcd(a, b)$ and

\[d = ax + by.\]
Correctness.

Proof: Strong Induction.\(^1\)

\(^1\)Assume \(d\) is \(gcd(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.\(^1\)

Base: \(\text{ext-gcd}(x, 0)\) returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

\(^1\)Assume \(d\) is \(\text{gcd}(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.\(^1\)

Base: \(\text{ext-gcd}(x, 0)\) returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

Induction Step: Returns \((d, A, B)\) with \(d = Ax + By\)

\(^1\)Assume \(d\) is \(\text{gcd}(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.\(^1\)

Base: \(\text{ext-gcd}(x, 0)\) returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

Induction Step: Returns \((d, A, B)\) with \(d = Ax + By\)

Ind hyp: \(\text{ext-gcd}(y, \mod(x, y))\) returns \((d, a, b)\) with
\[d = ay + b(\mod(x, y))\]

\(^1\)Assume \(d\) is \(gcd(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.¹

Base: ext-gcd(x, 0) returns \((d = x, 1, 0)\) with \(x = (1) x + (0) y\).

Induction Step: Returns \((d, A, B)\) with \(d = Ax + By\)

Ind hyp: ext-gcd(y, \(\text{mod}\ (x, y)\)) returns \((d, a, b)\) with
\[
d = ay + b(\text{mod} (x, y))
\]

ext-gcd(x, y) calls ext-gcd(y, \(\text{mod}\ (x, y)\)) so

¹Assume \(d\) is \(gcd(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.\(^1\)

Base: \(\text{ext-gcd}(x, 0)\) returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

Induction Step: Returns \((d, A, B)\) with \(d = Ax + By\)

Ind hyp: \(\text{ext-gcd}(y, \text{mod}(x, y))\) returns \((d, a, b)\) with \(d = ay + b(\text{mod}(x, y))\)

\(\text{ext-gcd}(x, y)\) calls \(\text{ext-gcd}(y, \text{mod}(x, y))\) so

\[
d = ay + b \cdot (\text{mod}(x, y))
\]

\(^1\)Assume \(d\) is \(\text{gcd}(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.\(^1\)

Base: `ext-gcd(x, 0)` returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

Induction Step: Returns \((d, A, B)\) with \(d = Ax + By\)

Ind hyp: `ext-gcd(y, \mod(x, y))` returns \((d, a, b)\) with

\[
d = ay + b(\mod(x, y))
\]

`ext-gcd(x, y)` calls `ext-gcd(y, \mod(x, y))` so

\[
d = ay + b(\mod(x, y))
\]

\[
= ay + b(x - \lfloor \frac{x}{y} \rfloor y)
\]

\(^1\)Assume \(d\) is \(gcd(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.\(^1\)

Base: \(\text{ext-gcd}(x, 0)\) returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

Induction Step: Returns \((d, A, B)\) with \(d = Ax + By\)

Ind hyp: \(\text{ext-gcd}(y, \mod(x, y))\) returns \((d, a, b)\) with
\[d = ay + b(\mod(x, y))\]

\(\text{ext-gcd}(x, y)\) calls \(\text{ext-gcd}(y, \mod(x, y))\) so
\[
d = ay + b(\mod(x, y))
\]
\[
= ay + b(x - \lceil\frac{x}{y}\rceil y)
\]
\[
= bx + (a - \lceil\frac{x}{y}\rceil \cdot b)y
\]

\(^1\)Assume \(d\) is \(gcd(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.¹

Base: ext-gcd(x, 0) returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

Induction Step: Returns \((d, A, B)\) with \(d = Ax + By\)

Ind hyp: ext-gcd\((y, \mod (x, y))\) returns \((d, a, b)\) with

\[
d = ay + b(\mod (x, y))
\]

ext-gcd\((x, y)\) calls ext-gcd\((y, \mod (x, y))\) so

\[
d = ay + b \cdot (\mod (x, y))
\]
\[
= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)
\]
\[
= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y
\]

And ext-gcd returns \((d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))\) so theorem holds!

¹Assume \(d\) is \(gcd(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.

Base: \(\text{ext-gcd}(x, 0) \) returns \((d = x, 1, 0) \) with \(x = (1)x + (0)y \).

Induction Step: Returns \((d, A, B) \) with \(d = Ax + By \)

Ind hyp: \(\text{ext-gcd}(y, \text{mod}(x, y)) \) returns \((d, a, b) \) with \(d = ay + b(\text{mod}(x, y)) \)

\(\text{ext-gcd}(x, y) \) calls \(\text{ext-gcd}(y, \text{mod}(x, y)) \) so

\[
\begin{align*}
 d &= ay + b \cdot (\text{mod}(x, y)) \\
 &= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y) \\
 &= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y
\end{align*}
\]

And \(\text{ext-gcd} \) returns \((d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b)) \) so theorem holds! \(\square \)

1 Assume \(d \) is \(\text{gcd}(x, y) \) by previous proof.

\[\text{ext-gcd}(x, y)\]
\[
\text{if } y = 0 \text{ then return}(x, 1, 0)
\]
\[
\text{else}
\]
\[
(d, a, b) := \text{ext-gcd}(y, \text{mod}(x, y))
\]
\[
\text{return } (d, b, a - \text{floor}(x/y) \times b)
\]

\[\text{ext-gcd}(x, y) \]
\[\quad \text{if } y = 0 \text{ then return } (x, 1, 0) \]
\[\quad \text{else} \]
\[\quad \quad (d, a, b) := \text{ext-gcd}(y, \text{mod}(x, y)) \]
\[\quad \quad \text{return } (d, b, a - \text{floor}(x/y) \times b) \]

Recursively: \[d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \]
ext-gcd(x, y)
 if y = 0 then return(x, 1, 0)
 else
 (d, a, b) := ext-gcd(y, mod(x,y))
 return (d, b, a - floor(x/y) * b)

Recursively: \(d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y \)

ext-gcd(x, y)
if y = 0 then return(x, 1, 0)
else
 (d, a, b) := ext-gcd(y, mod(x, y))
return (d, b, a - floor(x/y) * b)

Recursively: \(d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y \)

Returns \((d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))\).
Hand Calculation Method for Inverses.

Example: \(\gcd(7, 60) = 1 \).
Hand Calculation Method for Inverses.

Example: $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

Confirm: $-119 + 120 = 1$.
Hand Calculation Method for Inverses.

Example: \(\gcd(7, 60) = 1. \)
\(\text{egcd}(7, 60). \)

\[
7(0) + 60(1) = 60
\]
Example: \(\gcd(7, 60) = 1 \).
\begin{align*}
\text{egcd}(7, 60) & \\
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7
\end{align*}
Hand Calculation Method for Inverses.

Example: \(\gcd(7, 60) = 1 \).
\[
\text{egcd}(7, 60).
\]

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4
\end{align*}
\]

Confirm:
\[
-119 + 120 = 1
\]

\[
\frac{11}{43}
\]
Hand Calculation Method for Inverses.

Example: $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3
\end{align*}
\]
Example: $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]
Hand Calculation Method for Inverses.

Example: $\gcd(7, 60) = 1$.
\[\text{egcd}(7, 60). \]

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]
Hand Calculation Method for Inverses.

Example: \(\gcd(7, 60) = 1\).
\[\text{egcd}(7, 60)\]

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]

Confirm:
Hand Calculation Method for Inverses.

Example: \(\gcd(7, 60) = 1 \).

\[\text{egcd}(7, 60). \]

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]

Confirm: \(-119 + 120 = 1\)
Conclusion: Can find multiplicative inverses in $O(n)$ time!
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n/2}$
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...

$2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000?
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...

$2^{n/2}$

Inverse of $500,000,357$ modulo $1,000,000,000,000$?
≤ 80 divisions.
versus $1,000,000$
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...

$2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.

versus 1,000,000
Conclusion: Can find multiplicative inverses in $O(n)$ time!

Very different from elementary school: try 1, try 2, try 3...

$2^{n/2}$

Inverse of $500,000,357$ modulo $1,000,000,000,000,000$?

≤ 80 divisions.

versus $1,000,000$

Internet Security.
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n/2}$

Inverse of $500,000,357$ modulo $1,000,000,000,000$?
≤ 80 divisions.
versus $1,000,000$

Internet Security.
Public Key Cryptography: 512 digits.
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...

$2^{n/2}$

Inverse of $500,000,357$ modulo $1,000,000,000,000,000$?
≤ 80 divisions.
versus $1,000,000$

Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!

Very different from elementary school: try 1, try 2, try 3...

$2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000?

≤ 80 divisions.

versus 1,000,000

Internet Security.

Public Key Cryptography: 512 digits.

512 divisions vs.

$(1000
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...

$$2^{n/2}$$

Inverse of 500,000,357 modulo 1,000,000,000,000?

\leq 80 divisions.

versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.

$(1000)5$ divisions.

Internet Security:
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!

Very different from elementary school: try 1, try 2, try 3...

$2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000?

≤ 80 divisions.

versus 1,000,000

Internet Security.

Public Key Cryptography: 512 digits.

512 divisions vs.

$(100
Bijections

Bijection is **one to one** and **onto**.

Bijection:
Bijections

Bijection is one to one and onto.

Bijection:

\[f : A \to B. \]
Bijectons

Bijection is **one to one and onto**.

Bijection:

\[f : A \rightarrow B. \]

Domain: \(A \), Co-Domain: \(B \).
Bijections

Bijection is one to one and onto.

Bijection:
- \(f : A \to B \).

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. \(\sin(x) \).

\(A = B = \text{reals.} \)

Range is \([-1, 1]\).

Onto: \([-1, 1]\).

Not one-to-one.

\(\sin(\pi) = \sin(0) = 0. \)

Range Definition always is onto.

Consider \(f(x) = ax \mod m \).

\(f : \{0, \ldots, m-1\} \to \{0, \ldots, m-1\} \).

Domain/Co-Domain: \(\{0, \ldots, m-1\} \).

When is it a bijection?

When \(\gcd(a, m) = 1 \)?
Bijections

Bijection is **one to one** and **onto**.

Bijection:

\[f : A \rightarrow B. \]

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. \(\sin(x) \).
Bijections

Bijection is one to one and onto.

Bijection:
\[f : A \to B. \]

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. \(\sin(x) \).

\[A = B = \text{reals}. \]
Bijections

Bijection is **one to one** and **onto**.

Bijection:

\[f : A \rightarrow B. \]

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. **sin** (\(x \)).

\[A = B = \text{reals}. \]

Range is \([-1, 1]\).
Bijections

Bijection is **one to one** and **onto**.

Bijection:

\[f : A \rightarrow B. \]

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. \(\sin (x) \).

\[A = B = \text{reals}. \]

Range is \([-1, 1]\). Onto: \([-1, 1]\).
Bijections

Bijection is one to one and onto.

Bijection:
\[f : A \rightarrow B. \]

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. \(\sin (x) \).

\[A = B = \text{reals}. \]

Range is \([-1, 1]\). Onto: \([-1, 1]\).

Not one-to-one.
Bijections

Bijection is one to one and onto.

Bijection:

\[f : A \to B. \]

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. \(\sin(x) \).

\(A = B = \text{reals}. \)

Range is \([-1, 1]\). Onto: \([-1, 1]\).

Not one-to-one. \(\sin(\pi) = \sin(0) = 0. \)
Bijections

Bijecton is one to one and onto.

Bijection:

\[f : A \rightarrow B. \]

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. \(\sin (x) \).

\(A = B = \text{reals}. \)

Range is \([-1, 1]\). Onto: \([-1, 1]\).

Not one-to-one. \(\sin (\pi) = \sin (0) = 0. \)

Range Definition always is onto.
Bijections

Bijection is one to one and onto.

Bijection:

\[f : A \rightarrow B. \]

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. \(\sin (x) \).

\(A = B = \text{reals}. \)

Range is \([-1, 1] \). Onto: \([-1, 1] \).

Not one-to-one. \(\sin (\pi) = \sin (0) = 0. \)

Range Definition always is onto.

Consider \(f(x) = ax \mod m. \)
Bijections

Bijection is **one to one** and **onto**.

Bijection:

\[f : A \rightarrow B. \]

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. \(\sin(x) \).

\[A = B = \text{reals}. \]

Range is \([-1, 1]\). Onto: \([-1, 1]\).

Not one-to-one. \(\sin(\pi) = \sin(0) = 0 \).

Range Definition always is onto.

Consider \(f(x) = ax \mod m \).

\[f : \{0, \ldots, m-1\} \rightarrow \{0, \ldots, m-1\}. \]
Bijections

Bijection is one to one and onto.

Bijection:
\[f : A \to B. \]

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. \(\sin(x) \).
\[A = B = \text{reals}. \]

Range is \([-1, 1]\). Onto: \([-1, 1]\).

Not one-to-one. \(\sin(\pi) = \sin(0) = 0 \).

Range Definition always is onto.

Consider \(f(x) = ax \mod m \).
\[f : \{0, \ldots, m-1\} \to \{0, \ldots, m-1\}. \]

Domain/Co-Domain: \(\{0, \ldots, m-1\} \).
Bijections

Bijection is **one to one** and **onto**.

Bijection:

\[f : A \rightarrow B. \]

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. \(\sin (x) \).

\(A = B = \) reals.

Range is \([-1, 1]\). Onto: \([-1, 1]\).

Not one-to-one. \(\sin (\pi) = \sin (0) = 0. \)

Range Definition always is onto.

Consider \(f(x) = ax \mod m \).

\(f : \{0, \ldots, m-1\} \rightarrow \{0, \ldots, m-1\}. \)

Domain/Co-Domain: \(\{0, \ldots, m-1\} \).

When is it a bijection?
Bijections

Bijection is one to one and onto.

Bijection:

\[f : A \rightarrow B. \]

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. \(\sin(x) \).

\(A = B = \text{reals}. \)

Range is \([-1, 1]\). Onto: \([-1, 1]\).

Not one-to-one. \(\sin(\pi) = \sin(0) = 0 \).

Range Definition always is onto.

Consider \(f(x) = ax \mod m \).

\(f : \{0, \ldots, m-1\} \rightarrow \{0, \ldots, m-1\} \).

Domain/Co-Domain: \(\{0, \ldots, m-1\} \).

When is it a bijection?

When \(\gcd(a, m) \) is
Bijections

Bijection is **one to one and onto**.

Bijection:

\[f : A \rightarrow B. \]

Domain: \(A \), **Co-Domain:** \(B \).

Versus Range.

E.g. \(\sin (x) \).

\[A = B = \text{reals}. \]

Range is \([-1, 1]\). **Onto:** \([-1, 1]\).

Not one-to-one. \(\sin (\pi) = \sin (0) = 0. \)

Range Definition always is onto.

Consider \(f(x) = ax \mod m. \)

\[f : \{0, \ldots, m-1\} \rightarrow \{0, \ldots, m-1\}. \]

Domain/Co-Domain: \(\{0, \ldots, m-1\} \).

When is it a bijection?

When \(gcd(a, m) \) is?
Bijections

Bijection is **one to one** and **onto**.

Bijection:

\[f : A \rightarrow B. \]

Domain: \(A \), **Co-Domain:** \(B \).

Versus **Range.**

E.g. \(\sin(x) \).

\[A = B = \text{reals}. \]

Range is \([-1, 1]\). **Onto:** \([-1, 1]\).

Not one-to-one. \(\sin(\pi) = \sin(0) = 0. \)

Range **Definition** always is onto.

Consider \(f(x) = ax \mod m. \)

\[f : \{0, \ldots, m-1\} \rightarrow \{0, \ldots, m-1\}. \]

Domain/Co-Domain: \(\{0, \ldots, m-1\} \).

When is it a bijection?

When \(\gcd(a, m) \) is? ... 1.
Bijections

Bijection is one to one and onto.

Bijection:

\[f : A \rightarrow B. \]

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. \(\sin(x) \).

\(A = B = \) reals.

Range is \([-1, 1]\). Onto: \([-1, 1]\).

Not one-to-one. \(\sin(\pi) = \sin(0) = 0. \)

Range Definition always is onto.

Consider \(f(x) = ax \mod m. \)

\(f : \{0, \ldots, m - 1\} \rightarrow \{0, \ldots, m - 1\}. \)

Domain/Co-Domain: \(\{0, \ldots, m - 1\} \).

When is it a bijection?

When \(\gcd(a, m) \) is? ... 1.

Not Example: \(a = 2, \ m = 4, \)
Bijections

Bijection is **one to one and onto**.

Bijection:

\[f : A \rightarrow B. \]

Domain: \(A \), Co-Domain: \(B \).

Versus Range.

E.g. \(\sin(x) \).

\(A = B = \text{reals.} \)

Range is \([-1, 1]\). Onto: \([-1, 1]\).

Not one-to-one. \(\sin(\pi) = \sin(0) = 0. \)

Range Definition always is onto.

Consider \(f(x) = ax \mod m. \)

\[f : \{0, \ldots, m-1\} \rightarrow \{0, \ldots, m-1\}. \]

Domain/Co-Domain: \(\{0, \ldots, m-1\}. \)

When is it a bijection?

When \(\gcd(a, m) \) is ...? ... 1.

Not Example: \(a = 2, m = 4, f(0) = f(2) = 0 \pmod{4}. \)
Lots of Mods

\[x = 5 \pmod{7} \text{ and } x = 3 \pmod{5}. \]
$x = 5 \pmod{7}$ and $x = 3 \pmod{5}$.

What is $x \pmod{35}$?

Let's try 5. Not 3 ($x \pmod{5}$)!

Let's try 3. Not 5 ($x \pmod{7}$)!

If $x = 5 \pmod{7}$ then x is in \{5, 12, 19, 26, 33\}.

Oh, only 33 is $3 \pmod{5}$.

Hmmm... only one solution.

A bit slow for large values.
Lots of Mods

\[x = 5 \pmod{7} \text{ and } x = 3 \pmod{5}. \]
What is \(x \pmod{35} \)?
Let’s try 5.
$x = 5 \pmod{7}$ and $x = 3 \pmod{5}$.

What is $x \pmod{35}$?

Let’s try 5. Not $3 \pmod{5}$!
Lots of Mods

\[x = 5 \pmod{7} \text{ and } x = 3 \pmod{5}. \]
What is \(x \pmod{35} \)?
Let’s try 5. Not 3 \(\pmod{5} \)!
Let’s try 3.
\(x = 5 \pmod{7} \) and \(x = 3 \pmod{5} \).

What is \(x \pmod{35} \)?

Let's try 5. Not 3 \(\pmod{5} \)!
Let's try 3. Not 5 \(\pmod{7} \)!
 Lots of Mods

\[x = 5 \pmod{7} \text{ and } x = 3 \pmod{5}. \]

What is \(x \pmod{35} \)?

Let’s try 5. Not 3 \((\pmod{5})\)!

Let’s try 3. Not 5 \((\pmod{7})\)!
Lots of Mods

\[x = 5 \pmod{7} \text{ and } x = 3 \pmod{5}. \]

What is \(x \pmod{35} \)?

Let’s try 5. Not \(3 \pmod{5} \)!
Let’s try 3. Not \(5 \pmod{7} \)!
If \(x = 5 \pmod{7} \)
Lots of Mods

\[x = 5 \pmod{7} \text{ and } x = 3 \pmod{5}. \]

What is \(x \pmod{35} \)?

Let's try 5. Not 3 \(\pmod{5} \)!
Let's try 3. Not 5 \(\pmod{7} \)!

If \(x = 5 \pmod{7} \)
then \(x \) is in \(\{5, 12, 19, 26, 33\} \).
Lots of Mods

\[x = 5 \pmod{7} \] and \[x = 3 \pmod{5} \].

What is \(x \pmod{35} \)?

Let’s try 5. Not \(3 \pmod{5} \)!
Let’s try 3. Not \(5 \pmod{7} \)!

If \(x = 5 \pmod{7} \)
then \(x \) is in \(\{5, 12, 19, 26, 33\} \).
$x = 5 \pmod{7}$ and $x = 3 \pmod{5}$.

What is $x \pmod{35}$?

Let’s try 5. Not 3 $\pmod{5}$!
Let’s try 3. Not 5 $\pmod{7}$!

If $x = 5 \pmod{7}$
then x is in $\{5, 12, 19, 26, 33\}$.

Oh, only 33 is 3 $\pmod{5}$.

Lots of Mods
$x = 5 \pmod{7}$ and $x = 3 \pmod{5}$.

What is $x \pmod{35}$?

Let’s try 5. Not $3 \pmod{5}$!
Let’s try 3. Not $5 \pmod{7}$!

If $x = 5 \pmod{7}$
then x is in $\{5, 12, 19, 26, 33\}$.

Oh, only 33 is $3 \pmod{5}$.

Hmmm...
Lots of Mods

\[x = 5 \pmod{7} \] and \[x = 3 \pmod{5} \].

What is \(x \pmod{35} \)?

Let’s try 5. Not 3 \(\pmod{5} \)!
Let’s try 3. Not 5 \(\pmod{7} \)!

If \(x = 5 \pmod{7} \)
 then \(x \) is in \{5, 12, 19, 26, 33\}.

Oh, only 33 is 3 \(\pmod{5} \).

Hmmm... only one solution.
Lots of Mods

\[x = 5 \pmod{7} \] and \[x = 3 \pmod{5} \].

What is \(x \pmod{35} \)?

Let’s try 5. Not 3 \(\pmod{5} \)!
Let’s try 3. Not 5 \(\pmod{7} \)!

If \(x = 5 \pmod{7} \)
 then \(x \) is in \{5, 12, 19, 26, 33\}.

Oh, only 33 is 3 \(\pmod{5} \).

Hmmm... only one solution.

A bit slow for large values.
Simple Chinese Remainder Theorem.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where $\gcd(m, n) = 1$.

CRT Thm: There is a unique solution $x \pmod{mn}$.

Proof:

Consider $u = n \left(n - 1 \pmod{m}\right)$.

$u = 0 \pmod{n}$

$u = 1 \pmod{m}$

Consider $v = m \left(m - 1 \pmod{n}\right)$.

$v = 1 \pmod{n}$

$v = 0 \pmod{m}$

Let $x = au + bv$.

$x = a \pmod{m}$ since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$

$x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

Only solution? If not, two solutions, x and y.

$(x - y) \equiv 0 \pmod{m}$ and $(x - y) \equiv 0 \pmod{n}$.

$\Rightarrow (x - y)$ is multiple of m and n since $\gcd(m, n) = 1$.

$\Rightarrow x - y \ge mn \Rightarrow x, y \not\in \{0, \ldots, mn - 1\}$.

Thus, only one solution modulo mn.
Simple Chinese Remainder Theorem.

My love is won.
Simple Chinese Remainder Theorem.

My love is won. Zero and One.
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where $\gcd(m, n)=1$.
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m, n) = 1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m, n) = 1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof:
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where $\gcd(m, n)=1$.

CRT Thm: There is a unique solution $x \pmod{mn}$.

Proof:
Consider $u = n(n^{-1} \pmod{m})$.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \ (\text{mod } m) \) and \(x = b \ (\text{mod } n) \) where \(\gcd(m, n) = 1 \).

CRT Thm: There is a unique solution \(x \ (\text{mod } mn) \).

Proof:
Consider \(u = n(n^{-1} \ (\text{mod } m)) \).
\[u = 0 \ (\text{mod } n) \]
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m,n)=1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof:
Consider \(u = n(n^{-1} \pmod{m}) \).
\[
\begin{align*}
 u &= 0 \pmod{n} & u &= 1 \pmod{m}
\end{align*}
\]
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m, n) = 1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof:

Consider \(u = n(n^{-1} \pmod{m}) \).

\[
\begin{align*}
u &= 0 \pmod{n} \quad u = 1 \pmod{m} \\
&= 0 \pmod{n} \\
&= 1 \pmod{m}
\end{align*}
\]

Consider \(v = m(m^{-1} \pmod{n}) \).
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find \(x = a \mod m \) and \(x = b \mod n \) where \(\gcd(m, n)=1 \).

CRT Thm: There is a unique solution \(x \mod mn \).

Proof:
Consider \(u = n(n^{-1} \mod m)) \).
\[u = 0 \mod n \quad u = 1 \mod m \]

Consider \(v = m(m^{-1} \mod n)) \).
\[v = 1 \mod n \]
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m, n) = 1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof:
Consider \(u = n(n^{-1}) \pmod{m} \).
\[
u = 0 \pmod{n} \quad u = 1 \pmod{m}
\]

Consider \(v = m(m^{-1}) \pmod{n} \).
\[
v = 1 \pmod{n} \quad v = 0 \pmod{m}
\]
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m, n) = 1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof:
Consider \(u = n(\bar{n}^{-1} \pmod{m}) \).
\[
\begin{align*}
 u & = 0 \pmod{n} \quad u = 1 \pmod{m} \\
 v & = m(\bar{m}^{-1} \pmod{n}) \\
 v & = 1 \pmod{n} \quad v = 0 \pmod{m}
\end{align*}
\]

\[\begin{align*}
 x & = au + bv \\
 x & = a \pmod{m} \\
 x & = b \pmod{n}
\end{align*}\]

Only solution? If not, two solutions, \(x \) and \(y \).
\[
\begin{align*}
 (x - y) & \equiv 0 \pmod{m} \\
 (x - y) & \equiv 0 \pmod{n}
\end{align*}\]
\[\Rightarrow (x - y) \text{ is multiple of } m \text{ and } n \text{ since } \gcd(m, n) = 1.\]
\[\Rightarrow x - y \geq mn \Rightarrow x, y \notin \{0, \ldots, mn - 1\}.
\]

Thus, only one solution modulo \(mn \).
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where $\gcd(m, n) = 1$.

CRT Thm: There is a unique solution $x \pmod{mn}$.

Proof:
Consider $u = n(n^{-1} \pmod{m})$.

$u = 0 \pmod{n}$ \quad $u = 1 \pmod{m}$

Consider $v = m(m^{-1} \pmod{n})$.

$v = 1 \pmod{n}$ \quad $v = 0 \pmod{m}$

Let $x = au + bv$.
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m, n) = 1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof:
Consider \(u = n(n^{-1}) \pmod{m} \).

\[
\begin{align*}
u &= 0 \pmod{n} & u &= 1 \pmod{m} \\
\end{align*}
\]

Consider \(v = m(m^{-1}) \pmod{n} \).

\[
\begin{align*}
v &= 1 \pmod{n} & v &= 0 \pmod{m} \\
\end{align*}
\]

Let \(x = au + bv \).

\[
x = a \pmod{m}
\]
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m,n)=1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof:

Consider \(u = n(n^{-1} \pmod{m}) \).
\[
\begin{align*}
u &= 0 \pmod{n} & u &= 1 \pmod{m}
\end{align*}
\]

Consider \(v = m(m^{-1} \pmod{n}) \).
\[
\begin{align*}
v &= 1 \pmod{n} & v &= 0 \pmod{m}
\end{align*}
\]

Let \(x = au + bv \).
\[
\begin{align*}x &= a \pmod{m} \text{ since } bv = 0 \pmod{m} \text{ and } au = a \pmod{m}
\end{align*}
\]
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m, n)=1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof:

Consider \(u = n(n^{-1} \pmod{m}) \).

\[
\begin{align*}
 u &= 0 \pmod{n} \quad u = 1 \pmod{m} \\
\end{align*}
\]

Consider \(v = m(m^{-1} \pmod{n}) \).

\[
\begin{align*}
 v &= 1 \pmod{n} \quad v = 0 \pmod{m} \\
\end{align*}
\]

Let \(x = au + bv \).

\[
\begin{align*}
 x &= a \pmod{m} \quad \text{since } bv = 0 \pmod{m} \text{ and } au = a \pmod{m} \\
\end{align*}
\]
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m, n) = 1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof:
Consider \(u = n(n^{-1} \pmod{m}) \).

\[
\begin{align*}
u &= 0 \pmod{n} & u &= 1 \pmod{m}
\end{align*}
\]

Consider \(v = m(m^{-1} \pmod{n}) \).

\[
\begin{align*}
v &= 1 \pmod{n} & v &= 0 \pmod{m}
\end{align*}
\]

Let \(x = au + bv \).

\[
\begin{align*}
x &= a \pmod{m} & \text{since } bv &= 0 \pmod{m} \text{ and } au &= a \pmod{m} \\
x &= b \pmod{n}
\end{align*}
\]
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \) (mod \(m \)) and \(x = b \) (mod \(n \)) where gcd\((m, n)\)=1.

CRT Thm: There is a unique solution \(x \) (mod \(mn \)).

Proof:
Consider \(u = n(n^{-1}) \) (mod \(m \)).

\[
\begin{align*}
 u &= 0 \pmod{n} & u &= 1 \pmod{m}
\end{align*}
\]

Consider \(v = m(m^{-1}) \) (mod \(n \)).

\[
\begin{align*}
 v &= 1 \pmod{n} & v &= 0 \pmod{m}
\end{align*}
\]

Let \(x = au + bv \).

\[
\begin{align*}
 x &= a \pmod{m} \text{ since } bv = 0 \pmod{m} \text{ and } au = a \pmod{m} \\
 x &= b \pmod{n} \text{ since } au = 0 \pmod{n} \text{ and } bv = b \pmod{n}
\end{align*}
\]
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where $\gcd(m, n)=1$.

CRT Thm: There is a unique solution $x \pmod{mn}$.

Proof:

Consider $u = n(n^{-1} \pmod{m})$.

$u = 0 \pmod{n}$ \quad u = 1 \pmod{m}$

Consider $v = m(m^{-1} \pmod{n})$.

$v = 1 \pmod{n}$ \quad v = 0 \pmod{m}$

Let $x = au + bv$.

$x = a \pmod{m}$ since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$

$x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where $\gcd(m, n)=1$.

CRT Thm: There is a unique solution $x \pmod{mn}$.

Proof:
Consider $u = n(n^{-1}) \pmod{m})$.

- $u = 0 \pmod{n}$
- $u = 1 \pmod{m}$

Consider $v = m(m^{-1}) \pmod{n})$.

- $v = 1 \pmod{n}$
- $v = 0 \pmod{m}$

Let $x = au + bv$.

- $x = a \pmod{m}$ since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$
- $x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

Only solution?
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m, n)=1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof:

Consider \(u = n(n^{-1} \pmod{m}) \).

\[u = 0 \pmod{n} \quad u = 1 \pmod{m} \]

Consider \(v = m(m^{-1} \pmod{n}) \).

\[v = 1 \pmod{n} \quad v = 0 \pmod{m} \]

Let \(x = au + bv \).

\[x = a \pmod{m} \text{ since } bv = 0 \pmod{m} \text{ and } au = a \pmod{m} \]

\[x = b \pmod{n} \text{ since } au = 0 \pmod{n} \text{ and } bv = b \pmod{n} \]

Only solution? If not, two solutions, \(x \) and \(y \).
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where $\gcd(m, n) = 1$.

CRT Thm: There is a unique solution $x \pmod{mn}$.

Proof:
Consider $u = n(n^{-1} \pmod{m})$.

$u = 0 \pmod{n}$ \quad $u = 1 \pmod{m}$

Consider $v = m(m^{-1} \pmod{n})$.

$v = 1 \pmod{n}$ \quad $v = 0 \pmod{m}$

Let $x = au + bv$.

$x = a \pmod{m}$ since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$

$x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

Only solution? If not, two solutions, x and y.

$(x - y) \equiv 0 \pmod{m}$ and $(x - y) \equiv 0 \pmod{n}$.
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m, n) = 1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof:

Consider \(u = n(n^{-1} \pmod{m}) \).

\[
\begin{align*}
&u = 0 \pmod{n} \quad u = 1 \pmod{m} \\
&\text{Consider } v = m(m^{-1} \pmod{n}) . \\
&v = 1 \pmod{n} \quad v = 0 \pmod{m}
\end{align*}
\]

Let \(x = au + bv \).

\[
\begin{align*}
&x = a \pmod{m} \text{ since } bv = 0 \pmod{m} \text{ and } au = a \pmod{m} \\
&x = b \pmod{n} \text{ since } au = 0 \pmod{n} \text{ and } bv = b \pmod{n}
\end{align*}
\]

Only solution? If not, two solutions, \(x \) and \(y \).

\[
\begin{align*}
&(x - y) \equiv 0 \pmod{m} \text{ and } (x - y) \equiv 0 \pmod{n} . \\
\implies (x - y) \text{ is multiple of } m \text{ and } n \text{ since } \gcd(m, n) = 1 .
\end{align*}
\]
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m, n) = 1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof:

Consider \(u = n(n^{-1} \pmod{m}) \).

\[
\begin{align*}
 u &= 0 \pmod{n} \quad u = 1 \pmod{m} \\
\end{align*}
\]

Consider \(v = m(m^{-1} \pmod{n}) \).

\[
\begin{align*}
 v &= 1 \pmod{n} \quad v = 0 \pmod{m} \\
\end{align*}
\]

Let \(x = au + bv \).

\[
\begin{align*}
 x &= a \pmod{m} \text{ since } bv = 0 \pmod{m} \text{ and } au = a \pmod{m} \quad x = b \pmod{n} \text{ since } au = 0 \pmod{n} \text{ and } bv = b \pmod{n} \\
\end{align*}
\]

Only solution? If not, two solutions, \(x \) and \(y \).

\[
\begin{align*}
 (x - y) &\equiv 0 \pmod{m} \text{ and } (x - y) \equiv 0 \pmod{n} . \quad \implies (x - y) \text{ is multiple of } m \text{ and } n \text{ since } \gcd(m, n) = 1 . \quad \implies x - y \geq mn
\end{align*}
\]
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m, n)=1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof:

Consider \(u = n(n^{-1} \pmod{m}) \).
\[
u = 0 \pmod{n} \quad u = 1 \pmod{m}
\]

Consider \(v = m(m^{-1} \pmod{n}) \).
\[
v = 1 \pmod{n} \quad v = 0 \pmod{m}
\]

Let \(x = au + bv \).
\[
x = a \pmod{m} \quad \text{since } bv = 0 \pmod{m} \text{ and } au = a \pmod{m}
\]
\[
x = b \pmod{n} \quad \text{since } au = 0 \pmod{n} \text{ and } bv = b \pmod{n}
\]

Only solution? If not, two solutions, \(x \) and \(y \).
\[
(x - y) \equiv 0 \pmod{m} \text{ and } (x - y) \equiv 0 \pmod{n}.
\]
\[
\implies (x - y) \text{ is multiple of } m \text{ and } n \text{ since } \gcd(m, n)=1.
\]
\[
\implies x - y \geq mn \implies x, y \notin \{0, \ldots, mn-1\}.
\]
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m, n)=1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof:

Consider \(u = n(n^{-1}) \pmod{m} \).

\[
\begin{align*}
 u &= 0 \pmod{n} \quad u = 1 \pmod{m} \\
 v &= m(m^{-1}) \pmod{n} \quad v = 1 \pmod{n} \quad v = 0 \pmod{m}
\end{align*}
\]

Let \(x = au + bv \).

\[
\begin{align*}
 x &= a \pmod{m} \quad \text{since } bv = 0 \pmod{m} \quad \text{and } au = a \pmod{m} \\
 x &= b \pmod{n} \quad \text{since } au = 0 \pmod{n} \quad \text{and } bv = b \pmod{n}
\end{align*}
\]

Only solution? If not, two solutions, \(x \) and \(y \).

\[
\begin{align*}
 (x - y) &\equiv 0 \pmod{m} \quad \text{and } (x - y) \equiv 0 \pmod{n} \\
 \implies (x - y) &\text{ is multiple of } m \quad \text{and } n \quad \text{since } \gcd(m, n)=1. \\
 \implies x - y &\ge mn \implies x, y \not\in \{0, \ldots, mn - 1\}
\end{align*}
\]

Thus, only one solution modulo \(mn \).
Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where $\gcd(m, n)=1$.

CRT Thm: There is a unique solution $x \pmod{mn}$.

Proof:
Consider $u = n(n^{-1} \pmod{m})$.
\[u = 0 \pmod{n} \quad u = 1 \pmod{m} \]

Consider $v = m(m^{-1} \pmod{n})$.
\[v = 1 \pmod{n} \quad v = 0 \pmod{m} \]

Let $x = au + bv$.
\[x = a \pmod{m} \quad \text{since } bv = 0 \pmod{m} \text{ and } au = a \pmod{m} \]
\[x = b \pmod{n} \quad \text{since } au = 0 \pmod{n} \text{ and } bv = b \pmod{n} \]

Only solution? If not, two solutions, x and y.
\[(x - y) \equiv 0 \pmod{m} \text{ and } (x - y) \equiv 0 \pmod{n}. \]
\[\implies (x - y) \text{ is multiple of } m \text{ and } n \text{ since } \gcd(m, n)=1. \]
\[\implies x - y \geq mn \implies x, y \not\in \{0, \ldots, mn - 1\}. \]
Thus, only one solution modulo mn. \qed
Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$
Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof:
Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.
Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p-1)\}$.
All different modulo p since a has an inverse modulo p.

Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p-1)\}$.

All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p-1\}$ modulo p.

Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p-1)\}$.

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},$$

solve to get...
Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.

All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p - 1\}$ modulo p.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p - 1)) \equiv 1 \cdot 2 \cdots (p - 1) \pmod{p},$$

Since multiplication is commutative.
Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[
a^{p-1} \equiv 1 \pmod{p}.
\]

Proof: Consider \(S = \{a \cdot 1, \ldots, a \cdot (p-1)\} \).

All different modulo \(p \) since \(a \) has an inverse modulo \(p \).
\(S \) contains representative of \(\{1, \ldots, p-1\} \) modulo \(p \).

\[
(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},
\]
Since multiplication is commutative.

\[
a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}.
\]
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[
a^{p-1} \equiv 1 \pmod{p}.
\]

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.

All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p - 1\}$ modulo p.

\[
(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p - 1)) \equiv 1 \cdot 2 \cdots (p - 1) \pmod{p},
\]
Since multiplication is commutative.

\[
a^{(p-1)}(1 \cdots (p - 1)) \equiv (1 \cdots (p - 1)) \pmod{p}.
\]
Each of $2, \ldots, (p - 1)$ has an inverse modulo p,
Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[
a^{p-1} \equiv 1 \pmod{p}.
\]

Proof: Consider \(S = \{a \cdot 1, \ldots, a \cdot (p-1)\} \).

All different modulo \(p \) since \(a \) has an inverse modulo \(p \).

\(S \) contains representative of \(\{1, \ldots, p-1\} \) modulo \(p \).

\[
(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},
\]

Since multiplication is commutative.

\[
a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}.
\]

Each of \(2, \ldots, (p-1) \) has an inverse modulo \(p \), solve to get...
Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p-1)\}$.

All different modulo p since a has an inverse modulo p.

S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},$$

Since multiplication is commutative.

$$a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}.$$

Each of $2, \ldots (p-1)$ has an inverse modulo p, solve to get...

$$a^{(p-1)} \equiv 1 \pmod{p}.$$
Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p-1)\}$.

All different modulo p since a has an inverse modulo p.

S contains representative of $\{1, \ldots, p-1\}$ modulo p.

\[(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}, \]

Since multiplication is commutative.

\[a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}. \]

Each of $2, \ldots (p-1)$ has an inverse modulo p, solve to get...

\[a^{(p-1)} \equiv 1 \pmod{p}. \]
Fermat and Exponent reducing.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
Fermat and Exponent reducing.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$
Fermat and Exponent reducing.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

What is $2^{101} \pmod{7}$?
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

What is $2^{101} \pmod{7}$?

Wrong: $2^{101} = 2^{7*14+3} = 2^3 \pmod{7}$
Fermat and Exponent reducing.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

What is $2^{101} \pmod{7}$?

Wrong: $2^{101} = 2^{7 \times 14 + 3} = 2^3 \pmod{7}$

Fermat: 2 is relatively prime to 7. $\implies 2^6 = 1 \pmod{7}$.

Fermat and Exponent reducing.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[
a^{p-1} \equiv 1 \pmod{p}.
\]

What is $2^{101} \pmod{7}$?

Wrong: $2^{101} = 2^{7 \times 14 + 3} = 2^3 \pmod{7}$

Fermat: 2 is relatively prime to 7. $\implies 2^6 = 1 \pmod{7}$.

Correct: $2^{101} = 2^{6 \times 16 + 5} = 2^5 = 32 = 4 \pmod{7}$.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

What is $2^{101} \pmod{7}$?

Wrong: $2^{101} = 2^{7 \cdot 14 + 3} = 2^3 \pmod{7}$

Fermat: 2 is relatively prime to 7. \[\implies 2^6 = 1 \pmod{7}.\]

Correct: $2^{101} = 2^{6 \cdot 16 + 5} = 2^5 = 32 = 4 \pmod{7}$.

For a prime modulus, we can reduce exponents modulo $p - 1$!
Midterm Review

Now...
First there was logic...

A statement is true or false.
First there was logic...

A statement is true or false.
Statements?

Predicate: Statement with free variable(s).
Example: \(x = 3 \) Given a value for \(x \), becomes a statement.

Predicate: \(P(n) \)

No. An expression, not a statement.

Quantifiers:

\((\forall x) P(x) \). For every \(x \), \(P(x) \) is true.

\((\exists x) P(x) \). There exists an \(x \), where \(P(x) \) is true.

\((\forall n \in \mathbb{N}) n^2 \geq n \).

\((\forall x \in \mathbb{R}) (\exists y \in \mathbb{R}) y > x \).
First there was logic...

A statement is true or false.

Statements?

$3 = 4 - 1$?
First there was logic...

A statement is true or false.
Statements?
3 = 4 − 1 ? Statement!
First there was logic...

A statement is true or false.

Statements?
 \[3 = 4 - 1 \] ? Statement!
 \[3 = 5 \] ?
First there was logic...

A statement is true or false.

Statements?

$3 = 4 - 1$? Statement!

$3 = 5$? Statement!
First there was logic...

A statement is true or false.
Statements?
 3 = 4 – 1 ? Statement!
 3 = 5 ? Statement!
 3 ?
First there was logic...

A statement is true or false.

Statements?
3 = 4 – 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
First there was logic...

A statement is true or false.
Statements?
3 = 4 − 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ?
First there was logic...

A statement is true or false.

Statements?

3 = 4 – 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!

n = 3 ? Not a statement...
First there was logic...

A statement is true or false.

Statements?
3 = 4 − 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.
First there was logic...

A statement is true or false.
Statements?
 \(3 = 4 - 1 \) ? Statement!
 \(3 = 5 \) ? Statement!
 \(3 \) ? Not a statement!
 \(n = 3 \) ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
First there was logic...

A statement is true or false.

Statements?

3 = 4 − 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!

n = 3 ? Not a statement... but a predicate.

Predicate: Statement with free variable(s).

Example: x = 3
First there was logic...

A statement is true or false.
Statements?
3 = 4 – 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!

Predicate: Statement with free variable(s).
Example: x = 3
Given a value for x, becomes a statement.
First there was logic...

A statement is true or false.
Statements?
 3 = 4 – 1 ? Statement!
 3 = 5 ? Statement!
 3 ? Not a statement!
 n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
 Example: x = 3
 Given a value for x, becomes a statement.
Predicate?
First there was logic...

A statement is true or false.
Statements?
3 = 4 − 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement... but a predicate.

Predicate: Statement with free variable(s).
Example: $x = 3$
Given a value for x, becomes a statement.

Predicate?
n > 3 ?
First there was logic...

A statement is true or false.
Statements?
 3 = 4 − 1 ? Statement!
 3 = 5 ? Statement!
 3 ? Not a statement!
 \(n = 3 \) ? Not a statement...but a predicate.
Predicate: Statement with free variable(s).
 Example: \(x = 3 \)
 Given a value for \(x \), becomes a statement.
Predicate?
 \(n > 3 \) ? Predicate: \(P(n) \)!
First there was logic...

A statement is true or false.

Statements?
- $3 = 4 - 1$? Statement!
- $3 = 5$? Statement!
- 3 ? Not a statement!
- $n = 3$? Not a statement...but a predicate.

Predicate: Statement with free variable(s).

Example: $x = 3$
- Given a value for x, becomes a statement.

Predicate?
- $n > 3$? Predicate: $P(n)$!
- $x = y$?
First there was logic...

A statement is true or false.
Statements?
 3 = 4 − 1 ? Statement!
 3 = 5 ? Statement!
 3 ? Not a statement!
 n = 3 ? Not a statement...but a predicate.
Predicate: Statement with free variable(s).
 Example: x = 3
 Given a value for x, becomes a statement.
Predicate?
 n > 3 ? Predicate: P(n)!
 x = y? Predicate: P(x, y)!
A statement is true or false.
Statements?
 $3 = 4 - 1 \ ?$ Statement!
 $3 = 5 \ ?$ Statement!
 $3 \ ?$ Not a statement!
 $n = 3 \ ?$ Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: $x = 3$
 Given a value for x, becomes a statement.

Predicate?
 $n > 3 \ ?$ Predicate: $P(n)$!
 $x = y? \ Predicate: P(x, y)$!
 $x + y$?
First there was logic...

A statement is true or false.
Statements?
3 = 4 − 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3
 Given a value for x, becomes a statement.
Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x, y)!
x + y? No.
First there was logic...

A statement is true or false.

Statements?
- $3 = 4 - 1$? Statement!
- $3 = 5$? Statement!
- 3 ? Not a statement!
- $n = 3$? Not a statement...but a predicate.

Predicate: Statement with free variable(s).

Example: $x = 3$
- Given a value for x, becomes a statement.

Predicate?
- $n > 3$? Predicate: $P(n)$!
- $x = y$? Predicate: $P(x, y)$!
- $x + y$? No. An expression, not a statement.
First there was logic...

A statement is true or false.

Statements?

$3 = 4 - 1$? Statement!
$3 = 5$? Statement!
3 ? Not a statement!

$n = 3$? Not a statement...but a predicate.

Predicate: Statement with free variable(s).

Example: $x = 3$

Given a value for x, becomes a statement.

Predicate?

$n > 3$? Predicate: $P(n)$!

$x = y$? Predicate: $P(x, y)$!

$x + y$? No. An expression, not a statement.

Quantifiers:
First there was logic...

A statement is true or false.

Statements?
- \(3 = 4 - 1\) ? Statement!
- \(3 = 5\) ? Statement!
- \(3\) ? Not a statement!
- \(n = 3\) ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).

Example: \(x = 3\)
- Given a value for \(x\), becomes a statement.

Predicate?
- \(n > 3\) ? Predicate: \(P(n)\)!
- \(x = y\) ? Predicate: \(P(x, y)\)!
- \(x + y\) ? No. An expression, not a statement.

Quantifiers:

(\(\forall x\) \(P(x)\).
First there was logic...

A statement is true or false.

Statements?
3 = 4 − 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!

n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: $x = 3$
Given a value for x, becomes a statement.

Predicate?
n > 3 ? Predicate: $P(n)$!
x = y? Predicate: $P(x, y)$!
x + y? No. An expression, not a statement.

Quantifiers:
$(\forall x) P(x)$. For every x, $P(x)$ is true.
First there was logic...

A statement is true or false.
Statements?
 \(3 = 4 - 1 \) ? Statement!
 \(3 = 5 \) ? Statement!
 \(3 \) ? Not a statement!
 \(n = 3 \) ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
 Example: \(x = 3 \)
 Given a value for \(x \), becomes a statement.

Predicate?
 \(n > 3 \) ? Predicate: \(P(n)! \)
 \(x = y \) ? Predicate: \(P(x, y)! \)
 \(x + y \) ? No. An expression, not a statement.

Quantifiers:
 \((\forall x) \ P(x). \) For every \(x \), \(P(x) \) is true.
 \((\exists x) \ P(x). \)
First there was logic...

A statement is true or false.

Statements?

3 = 4 – 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!

n = 3 ? Not a statement... but a predicate.

Predicate: Statement with free variable(s).

Example: $x = 3$

Given a value for x, becomes a statement.

Predicate?

$n > 3$? Predicate: $P(n)$!

$x = y$? Predicate: $P(x, y)$!

$x + y$? No. An expression, not a statement.

Quantifiers:

$(\forall x) \ P(x)$. For every x, $P(x)$ is true.

$(\exists x) \ P(x)$. There exists an x, where $P(x)$ is true.
First there was logic...

A statement is true or false.
Statements?
 $3 = 4 - 1$? Statement!
 $3 = 5$? Statement!
 3 ? Not a statement!
 $n = 3$? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
 Example: $x = 3$
 Given a value for x, becomes a statement.

Predicate?
 $n > 3$? Predicate: $P(n)$!
 $x = y$? Predicate: $P(x, y)$!
 $x + y$? No. An expression, not a statement.

Quantifiers:
 $(\forall x) \ P(x)$. For every x, $P(x)$ is true.
 $(\exists x) \ P(x)$. There exists an x, where $P(x)$ is true.

$(\forall n \in N), \ n^2 \geq n.$
First there was logic...

A statement is true or false.

Statements?

3 = 4 – 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!

n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).

Example: \(x = 3\)
- Given a value for \(x\), becomes a statement.

Predicate?

\(n > 3\) ? Predicate: \(P(n)!\)

\(x = y?\) Predicate: \(P(x, y)\)

\(x + y?\) No. An expression, not a statement.

Quantifiers:

\((\forall x) P(x).\) For every \(x\), \(P(x)\) is true.

\((\exists x) P(x).\) There exists an \(x\), where \(P(x)\) is true.

\((\forall n \in N), n^2 \geq n.\)

\((\forall x \in R)(\exists y \in R)y > x.\)
First there was logic...

A statement is true or false.
Statements?
 \[3 = 4 - 1\] ? Statement!
 \[3 = 5\] ? Statement!
 \[3\] ? Not a statement!
 \[n = 3\] ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
 Example: \(x = 3\)
 Given a value for \(x\), becomes a statement.

Predicate?
 \(n > 3\) ? Predicate: \(P(n)\)!
 \(x = y\) ? Predicate: \(P(x, y)\)!
 \(x + y\)? No. An expression, not a statement.

Quantifiers:
 \[(\forall x) P(x)\]. For every \(x\), \(P(x)\) is true.
 \[(\exists x) P(x)\]. There exists an \(x\), where \(P(x)\) is true.

\[(\forall n \in N), n^2 \geq n\].
\[(\forall x \in R)(\exists y \in R) y > x\].
Connecting Statements

\[A \land B, \ A \lor B, \ \neg A. \]
Connecting Statements

$A \land B, A \lor B, \neg A.$

You got this!
Connecting Statements

\[A \land B, \ A \lor B, \ \neg A. \]

You got this!

Propositional Expressions and Logical Equivalence
Connecting Statements

$A \land B, A \lor B, \neg A$

You got this!

Propositional Expressions and Logical Equivalence

$(A \implies B) \equiv (\neg A \lor B)$
Connecting Statements

\[A \land B, \ A \lor B, \ \neg A. \]

You got this!

Propositional Expressions and Logical Equivalence

\[
\begin{align*}
(A \implies B) & \equiv (\neg A \lor B) \\
\neg (A \lor B) & \equiv (\neg A \land \neg B)
\end{align*}
\]
Connecting Statements

$A \land B$, $A \lor B$, $\neg A$.

You got this!

Propositional Expressions and Logical Equivalence

$(A \implies B) \equiv (\neg A \lor B)$

$\neg(A \lor B) \equiv (\neg A \land \neg B)$
Connecting Statements

$A \land B$, $A \lor B$, $\neg A$.

You got this!

Propositional Expressions and Logical Equivalence

\[(A \implies B) \equiv (\neg A \lor B)\]
\[(\neg (A \lor B)) \equiv (\neg A \land \neg B)\]

Proofs: truth table or manipulation of known formulas.
Connecting Statements

\(A \land B, \ A \lor B, \ \neg A. \)

You got this!

Propositional Expressions and Logical Equivalence

\[
(A \implies B) \equiv (\neg A \lor B)
\]

\[
\neg(A \lor B) \equiv (\neg A \land \neg B)
\]

Proofs: truth table or manipulation of known formulas.

\[
(\forall x)(P(x) \land Q(x)) \equiv (\forall x)P(x) \land (\forall x)Q(x)
\]
..and then proofs...

Direct: $P \implies Q$
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even?
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$

$a^2 = 4k^2$.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.

Example: a^2 is odd $\implies a$ is odd.

Contrapositive: a is even $\implies a^2$ is even.

Contradiction: $P \quad \neg P \implies false \quad \neg P \implies R \land \neg R$.

Useful for prove something does not exist:

Example: rational representation of $\sqrt{2}$ does not exist.

Example: finite set of primes does not exist.

Example: rogue couple does not exist.
and then proofs...

Direct: \(P \implies Q \)

Example: \(a \) is even \(\implies a^2 \) is even.

Approach: What is even? \(a = 2k \)

\[a^2 = 4k^2. \]

What is even?
..and then proofs...

Direct: \(P \implies Q \)

Example: \(a \) is even \(\implies a^2 \) is even.

Approach: What is even? \(a = 2k \)
\[
a^2 = 4k^2.
\]
What is even?
\[
a^2 = 2(2k^2)
\]
..and then proofs...

Direct: \(P \implies Q \)
Example: \(a \) is even \(\implies a^2 \) is even.
Approach: What is even? \(a = 2k \)
\[a^2 = 4k^2. \]
What is even?
\[a^2 = 2(2k^2) \]
Integers closed under multiplication!

Contrapositive:
\(P = \implies Q \) or \(\neg Q = \implies \neg P \).
Example: \(a^2 \) is odd \(\implies a \) is odd.
Contrapositive: \(a \) is even \(\implies a^2 \) is even.

Contradiction:
\(P \neg P = \implies \) false \(\neg P = \implies R \land \neg R \).
Useful for prove something does not exist:
Example: Rational representation of \(\sqrt{2} \) does not exist.
Example: Finite set of primes does not exist.
Example: Rogue couple does not exist.
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even?

$a = 2k$

$a^2 = 4k^2$.

What is even?

$a^2 = 2(2k^2)$

Integers closed under multiplication!

a^2 is even.
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$

$a^2 = 4k^2$.

What is even?

$a^2 = 2(2k^2)$

Integers closed under multiplication!

a^2 is even.
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$

$a^2 = 4k^2$.

What is even?

$a^2 = 2(2k^2)$

Integers closed under multiplication!

a^2 is even.

Contrapositive: $P \implies Q$
..and then proofs...

Direct: $P \implies Q$
Example: a is even $\implies a^2$ is even.
Approach: What is even? $a = 2k$
$a^2 = 4k^2$.
What is even?
$a^2 = 2(2k^2)$
Integers closed under multiplication!
a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$

$a^2 = 4k^2$.

What is even?

$a^2 = 2(2k^2)$

Integers closed under multiplication!

a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.

Example: a^2 is odd $\implies a$ is odd.
..and then proofs...

Direct: \(P \implies Q \)

Example: \(a \) is even \(\implies a^2 \) is even.

Approach: What is even? \(a = 2k \)
\[
\begin{align*}
 a^2 &= 4k^2. \\
 \text{What is even?} \\
 a^2 &= 2(2k^2) \\
 \text{Integers closed under multiplication!} \\
 a^2 \text{ is even.}
\end{align*}
\]

Contrapositive: \(P \implies Q \) or \(\neg Q \implies \neg P. \)

Example: \(a^2 \) is odd \(\implies a \) is odd.

Contrapositive: \(a \) is even \(\implies a^2 \) is even.
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$
$a^2 = 4k^2$.
What is even?
$a^2 = 2(2k^2)$
Integers closed under multiplication!
a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.

Example: a^2 is odd $\implies a$ is odd.
Contrapositive: a is even $\implies a^2$ is even.
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$

$a^2 = 4k^2$.

What is even?

$a^2 = 2(2k^2)$

Integers closed under multiplication!

a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.

Example: a^2 is odd $\implies a$ is odd.

Contrapositive: a is even $\implies a^2$ is even.

Contradiction: P
..and then proofs...

Direct: \(P \implies Q \)

Example: \(a \) is even \(\implies a^2 \) is even.

Approach: What is even? \(a = 2k \)
\[a^2 = 4k^2. \]
What is even?
\[a^2 = 2(2k^2) \]
Integers closed under multiplication!
\(a^2 \) is even.

Contrapositive: \(P \implies Q \) or \(\neg Q \implies \neg P. \)

Example: \(a^2 \) is odd \(\implies a \) is odd.

Contrapositive: \(a \) is even \(\implies a^2 \) is even.

Contradiction: \(P \)
\[\neg P \implies \text{false} \]
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$

$a^2 = 4k^2$.

What is even?

$a^2 = 2(2k^2)$

Integers closed under multiplication!

a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.

Example: a^2 is odd $\implies a$ is odd.

Contrapositive: a is even $\implies a^2$ is even.

Contradiction: P

$\neg P \implies \text{false}$

$\neg P \implies R \land \neg R$
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$

$a^2 = 4k^2$.

What is even?

$a^2 = 2(2k^2)$

Integers closed under multiplication!

a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.

Example: a^2 is odd $\implies a$ is odd.

Contrapositive: a is even $\implies a^2$ is even.

Contradiction: P

$\neg P \implies \text{false}$

$\neg P \implies R \land \neg R$

Useful for prove something does not exist:
..and then proofs...

Direct: \(P \implies Q \)
Example: \(a \) is even \(\implies a^2 \) is even.
Approach: What is even? \(a = 2k \)
\[a^2 = 4k^2. \]
What is even?
\[a^2 = 2(2k^2) \]
Integers closed under multiplication!
\(a^2 \) is even.

Contrapositive: \(P \implies Q \) or \(\neg Q \implies \neg P \).
Example: \(a^2 \) is odd \(\implies a \) is odd.
Contrapositive: \(a \) is even \(\implies a^2 \) is even.

Contradiction: \(P \)
\(\neg P \implies \text{false} \)
\(\neg P \implies R \land \neg R \)
Useful for prove something does not exist:
Example: rational representation of \(\sqrt{2} \)
..and then proofs...

Direct: \[P \implies Q \]

Example: \(a \) is even \(\implies \) \(a^2 \) is even.

Approach: What is even? \(a = 2k \)
\[
 a^2 = 4k^2.
\]

What is even?
\[
 a^2 = 2(2k^2)
\]
Integers closed under multiplication!
\(a^2 \) is even.

Contrapositive: \(P \implies Q \) or \(\neg Q \implies \neg P \).

Example: \(a^2 \) is odd \(\implies \) \(a \) is odd.

Contrapositive: \(a \) is even \(\implies \) \(a^2 \) is even.

Contradiction: \(P \)
\[
 \neg P \implies \text{false}
\]
\[
 \neg P \implies R \land \neg R
\]

Useful for prove something does not exist:

Example: rational representation of \(\sqrt{2} \) does not exist.
..and then proofs...

Direct: \(P \implies Q \)
Example: \(a \) is even \(\implies a^2 \) is even.
Approach: What is even? \(a = 2k \)
\[a^2 = 4k^2. \]
What is even?
\[a^2 = 2(2k^2) \]
Integers closed under multiplication!
\(a^2 \) is even.

Contrapositive: \(P \implies Q \) or \(\neg Q \implies \neg P \).
Example: \(a^2 \) is odd \(\implies a \) is odd.
Contrapositive: \(a \) is even \(\implies a^2 \) is even.

Contradiction: \(P \)
\[\neg P \implies \text{false} \]
\[\neg P \implies R \land \neg R \]
Useful for prove something does not exist:
Example: rational representation of \(\sqrt{2} \) does not exist.
Example: finite set of primes
..and then proofs...

Direct: $P \implies Q$
Example: a is even $\implies a^2$ is even.
Approach: What is even? $a = 2k$
 $a^2 = 4k^2$.
What is even?
 $a^2 = 2(2k^2)$
Integers closed under multiplication!
 a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.
Example: a^2 is odd $\implies a$ is odd.
Contrapositive: a is even $\implies a^2$ is even.

Contradiction: P
 $\neg P \implies \textbf{false}$
 $\neg P \implies R \land \neg R$
Useful for prove something does not exist:
 Example: rational representation of $\sqrt{2}$ does not exist.
 Example: finite set of primes does not exist.
..and then proofs...

Direct: $P \implies Q$
- Example: a is even $\implies a^2$ is even.
 - Approach: What is even? $a = 2k$
 $a^2 = 4k^2$.
 - What is even?
 $a^2 = 2(2k^2)$
 - Integers closed under multiplication!
 a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.
- Example: a^2 is odd $\implies a$ is odd.
 - Contrapositive: a is even $\implies a^2$ is even.

Contradiction: P
- $\neg P \implies$ false
- $\neg P \implies R \land \neg R$

Useful for prove something does not exist:
- Example: rational representation of $\sqrt{2}$ does not exist.
- Example: finite set of primes does not exist.
- Example: rogue couple does not exist.
...jumping forward..

Contradiction in induction:
...jumping forward..

Contradiction in induction:
contradict place where induction step doesn’t hold.
...jumping forward..

Contradiction in induction:
 contradict place where induction step doesn’t hold.

Well Ordering Principle.
...jumping forward..

Contradiction in induction:
 contradict place where induction step doesn’t hold.

Well Ordering Principle.
Stable Marriage:
...jumping forward..

Contradiction in induction:
contradict place where induction step doesn’t hold.

Well Ordering Principle.
Stable Marriage:
first day where women does not improve.
...jumping forward..

Contradiction in induction:
contradict place where induction step doesn’t hold.

Well Ordering Principle.
Stable Marriage:
first day where women does not improve.
first day where any man rejected by optimal women.
...jumping forward..

Contradiction in induction:
 contradict place where induction step doesn’t hold.

Well Ordering Principle.
Stable Marriage:
 first day where women does not improve.
 first day where any man rejected by optimal women.
Do not exist.
...jumping forward..

Contradiction in induction:
 contradict place where induction step doesn’t hold.

Well Ordering Principle.
Stable Marriage:
 first day where women does not improve.
 first day where any man rejected by optimal women.
Do not exist.
...jumping forward..

Contradiction in induction:
 contradict place where induction step doesn’t hold.

Well Ordering Principle.
Stable Marriage:
 first day where women does not improve.
 first day where any man rejected by optimal women.
Do not exist.
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in N) P(n). \]
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n). \]

Thm: For all \(n \geq 1 \), \(8 \mid 3^{2n} - 1 \).
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n)). \]

Thm: For all \(n \geq 1 \), \(8 | 3^{2n} - 1 \).

Induction on \(n \).
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n)). \]

Thm: For all \(n \geq 1 \), \(8|3^{2n} - 1 \).

Induction on \(n \).

Base: \(8|3^2 - 1 \).
...and then induction...

\[P(0) \land (\forall n)(P(n) \implies P(n + 1)) \equiv (\forall n \in \mathbb{N}) P(n). \]

Thm: For all \(n \geq 1, \ 8 \mid 3^{2n} - 1. \)

Induction on \(n. \)

Base: \(8 \mid 3^{2} - 1. \)
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in N) P(n)). \]

Thm: For all \(n \geq 1 \), \(8 \mid 3^{2n} - 1 \).

Induction on \(n \).

Base: \(8 \mid 3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n + 1)) \equiv (\forall n \in N) P(n). \]

Thm: For all \(n \geq 1 \), \(8 | 3^{2n} - 1 \).

Induction on \(n \).

Base: \(8 | 3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).

Induction Step: Prove \(P(n + 1) \)
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1))) \equiv (\forall n \in \mathbb{N}) P(n). \]

Thm: For all \(n \geq 1 \), \(8 \mid 3^{2n} - 1 \).

Induction on \(n \).

Base: \(8 \mid 3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).

Induction Step: Prove \(P(n+1) \)

\[
3^{2n+2} - 1 =
\]
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n)). \]

Thm: For all \(n \geq 1 \), \(8 \mid 3^{2n} - 1 \).

Induction on \(n \).

Base: \(8 \mid 3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).

Induction Step: Prove \(P(n+1) \)

\[3^{2n+2} - 1 = 9(3^{2n}) - 1 \]
...and then induction...

\[
P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n).
\]

Thm: For all \(n \geq 1 \), \(8|3^{2n} - 1 \).

Induction on \(n \).

Base: \(8|3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).

\[
(3^{2n} - 1 = 8d)
\]

Induction Step: Prove \(P(n+1) \)

\[
3^{2n+2} - 1 = 9(3^{2n}) - 1 \quad \text{(by induction hypothesis)}
\]
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in N) P(n). \]

Thm: For all \(n \geq 1 \), \(8 \mid 3^{2n} - 1 \).

Induction on \(n \).

Base: \(8 \mid 3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).

\((3^{2n} - 1 = 8d) \)

Induction Step: Prove \(P(n+1) \)

\[3^{2n+2} - 1 = 9(3^{2n}) - 1 \] (by induction hypothesis)
\[= 9(8d + 1) - 1 \]
...and then induction...

\[P(0) \land ((\forall n) (P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n)). \]

Thm: For all \(n \geq 1 \), \(8 | 3^{2n} - 1 \).

Induction on \(n \).

Base: \(8 | 3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).

\((3^{2n} - 1 = 8d)\)

Induction Step: Prove \(P(n+1) \)

\[3^{2n+2} - 1 = 9(3^{2n}) - 1 \quad \text{(by induction hypothesis)} \]
\[= 9(8d + 1) - 1 \]
\[= 72d + 8 \]
...and then induction...

\[P(0) \land (\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n). \]

Thm: For all \(n \geq 1 \), \(8 \mid 3^{2n} - 1 \).

Induction on \(n \).

Base: \(8 \mid 3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).

\((3^{2n} - 1 = 8d)\)

Induction Step: Prove \(P(n+1) \)

\[
3^{2n+2} - 1 = 9(3^{2n}) - 1 \quad \text{(by induction hypothesis)}
\]
\[
= 9(8d + 1) - 1
\]
\[
= 72d + 8
\]
\[
= 8(9d + 1)
\]
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in N) P(n)). \]

Thm: For all \(n \geq 1 \), \(8|3^{2n} - 1 \).

Induction on \(n \).

Base: \(8|3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).
\((3^{2n} - 1 = 8d) \)

Induction Step: Prove \(P(n+1) \)

\[3^{2n+2} - 1 = 9(3^{2n}) - 1 \quad \text{(by induction hypothesis)} \]
\[= 9(8d + 1) - 1 \]
\[= 72d + 8 \]
\[= 8(9d + 1) \]

Divisible by 8.
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in N) P(n). \]

Thm: For all \(n \geq 1, 8 \mid 3^{2n} - 1. \)

Induction on \(n. \)

Base: \(8 \mid 3^2 - 1. \)

Induction Hypothesis: Assume \(P(n): \) True for some \(n. \)
\((3^{2n} - 1 = 8d) \)

Induction Step: Prove \(P(n + 1) \)

\[
3^{2n+2} - 1 = 9(3^{2n}) - 1 \quad \text{(by induction hypothesis)}
\]
\[
= 9(8d + 1) - 1
\]
\[
= 72d + 8
\]
\[
= 8(9d + 1)
\]

Divisible by 8.
Stable Marriage: a study in definitions and WOP.

\(n \)-men, \(n \)-women.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.
Stable Marriage: a study in definitions and WOP.

\(n \)-men, \(n \)-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once.
Stable Marriage: a study in definitions and WOP.

\(n\)-men, \(n\)-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs \((m_i, w_j)\) containing all people *exactly* once.
How many pairs?
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once.
How many pairs? n.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people exactly once.
How many pairs? n.
People in pair are **partners** in pairing.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people exactly once.
How many pairs? n.
People in pair are **partners** in pairing.

Rogue Couple in a pairing.
A m_j and w_k who like each other more than their partners
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
- Set of pairs (m_i, w_j) containing all people exactly once.
 - How many pairs? n.
 - People in pair are **partners** in pairing.

Rogue Couple in a pairing.
- A m_j and w_k who like each other more than their partners
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once.
How many pairs? n.
People in pair are **partners** in pairing.

Rogue Couple in a pairing.
A m_j and w_k who like each other more than their partners

Stable Pairing.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once.

- How many pairs? n.
- People in pair are **partners** in pairing.

Rogue Couple in a pairing.
A m_j and w_k who like each other more than their partners

Stable Pairing.
Pairing with no rogue couples.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once. How many pairs? n.
People in pair are **partners** in pairing.

Rogue Couple in a pairing.
A m_j and w_k who like each other more than their partners

Stable Pairing.
Pairing with no rogue couples.

Does stable pairing exist?
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once.
How many pairs? n.
People in pair are *partners* in pairing.

Rogue Couple in a pairing.
A m_j and w_k who like each other more than their partners

Stable Pairing.
Pairing with no rogue couples.

Does stable pairing exist?
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people exactly once.
How many pairs? n.
People in pair are **partners** in pairing.

Rogue Couple in a pairing.
A m_j and w_k who like each other more than their partners

Stable Pairing.
Pairing with no rogue couples.

Does stable pairing exist?
No, for roommates problem.
Traditional Marriage Algorithm:

- Each Day:
 - All men propose to their favorite non-rejecting woman.
 - Every woman rejects all but the best men who propose.

Useful Algorithmic Definitions:

- Man crosses off the woman who rejected him.
- Woman's current proposer is on string.

"Propose and Reject."

- Either men propose or women.
- But not both.

Traditional propose and reject where men propose.

Key Property: Improvement Lemma:

- Every day, if man on string for woman, then any future man on string is better.

Stability:

- No rogue couple.

- A couple (M,W) is rogue if M proposed to W and W ended up with someone she liked better than M.

Not rogue couple!
TMA.

Traditional Marriage Algorithm:

Each Day:
TMA.

Traditional Marriage Algorithm:

Each Day:
All men propose to favorite non-rejecting woman.
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite non-rejecting woman.
Every woman rejects all but best men who proposes.
Traditional Marriage Algorithm:

Each Day:
- All men propose to favorite non-rejecting woman.
- Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite non-rejecting woman. Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
TMA.

Traditional Marriage Algorithm:

Each Day:
All men propose to favorite non-rejecting woman.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”
Traditional Marriage Algorithm:

Each Day:
- All men propose to favorite non-rejecting woman.
- Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
- Man **crosses off** woman who rejected him.
- Woman’s current proposer is **“on string.”**

“Propose and Reject.”
Traditional Marriage Algorithm:

Each Day:
- All men propose to favorite non-rejecting woman.
- Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
- Man crosses off woman who rejected him.
- Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women.
TMA.

Traditional Marriage Algorithm:

Each Day:
All men propose to favorite non-rejecting woman.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both.
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite non-rejecting woman.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both.
 Traditional propose and reject where men propose.
Traditional Marriage Algorithm:

Each Day:
 All men propose to favorite non-rejecting woman.
 Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
 Man **crosses off** woman who rejected him.
 Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both.
 Traditional propose and reject where men propose.
TMA.

Traditional Marriage Algorithm:

Each Day:
 All men propose to favorite non-rejecting woman.
 Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
 Man **crosses off** woman who rejected him.
 Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both.
 Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Traditional Marriage Algorithm:

Each Day:
- All men propose to favorite non-rejecting woman.
- Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
- Man **crosses off** woman who rejected him.
- Woman’s current proposer is “on string.”

“Propose and Reject.”: Either men propose or women. But not both.
- Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
- Every day, if man on string for woman,
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite non-rejecting woman.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both.
Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Every day, if man on string for woman,
any future man on string is better.
TMA.

Traditional Marriage Algorithm:

Each Day:
All men propose to favorite non-rejecting woman.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both.
Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Every day, if man on string for woman,
 any future man on string is better.

Stability:
TMA.

Traditional Marriage Algorithm:

Each Day:
All men propose to favorite non-rejecting woman.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both.
 Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Every day, if man on string for woman,
 \(\implies \) any future man on string is better.

Stability: No rogue couple.
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite non-rejecting woman.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man **crosses off** woman who rejected him.
Woman’s current proposer is “**on string.”**

“Propose and Reject.” : Either men propose or women. But not both.
 Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Every day, if man on string for woman,
 any future man on string is better.

Stability: No rogue couple.
 rogue couple (M,W)
TMA.

Traditional Marriage Algorithm:

Each Day:
All men propose to favorite non-rejecting woman.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both.
Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Every day, if man on string for woman,
\[\rightarrow \] any future man on string is better.

Stability: No rogue couple.
rogue couple (M,W)
\[\rightarrow \] M proposed to W
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite non-rejecting woman.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both. Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Every day, if man on string for woman,
\[\implies \text{any future man on string is better.} \]

Stability: No rogue couple.
rogue couple (M,W)
\[\implies M \text{ proposed to } W \]
\[\implies W \text{ ended up with someone she liked better than } M. \]
TMA.

Traditional Marriage Algorithm:

Each Day:
All men propose to favorite non-rejecting woman.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject.”: Either men propose or women. But not both.
 Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Every day, if man on string for woman,
 any future man on string is better.

Stability: No rogue couple.
 rogue couple (M,W)
 M proposed to W
 W ended up with someone she liked better than M.
Not rogue couple!
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.

Thm: TMA produces male optimal pairing, S.

First man M to lose optimal partner.

Better partner W for M.

Different stable pairing T.

TMA: M asked W first!

There is M' who bumps M in TMA.

W prefers M'.

M' likes W at least as much as optimal partner.

Since M' was not the first to be bumped.

M' and W is rogue couple in T.

Thm: woman pessimal.

Man optimal \Rightarrow Woman pessimal.

Woman optimal \Rightarrow Man pessimal.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Optimality/Pessimal

Optimal partner if best partner in any \textit{stable} pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing. Not necessarily first in list. Possibly no stable pairing with that partner.
Optimality/Pessimal

Optimal partner if best partner in any **stable** pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
 Not necessarily first in list.
 Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.

Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
 Not necessarily first in list.
 Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
 First man M to lose optimal partner.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, \(S \).
First man \(M \) to lose optimal partner.
Better partner \(W \) for \(M \).
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
Optimality/Pessimal

Optimal partner if best partner in any **stable** pairing.
 Not necessarily first in list.
 Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
 First man M to lose optimal partner.
 Better partner W for M.
 Different stable pairing T.
 TMA: M asked W first!
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
 Not necessarily first in list.
 Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
 First man M to lose optimal partner.
 Better partner W for M.
 Different stable pairing T.
 TMA: M asked W first!
 There is M' who bumps M in TMA.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
 Not necessarily first in list.
 Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
 First man M to lose optimal partner.
 Better partner W for M.
 Different stable pairing T.
 TMA: M asked W first!
 There is M' who bumps M in TMA.
 W prefers M'.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
TMA: M asked W first!
There is M' who bumps M in TMA.
W prefers M'.
M' likes W at least as much as optimal partner.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
TMA: M asked W first!
There is M' who bumps M in TMA.
W prefers M'.
M' likes W at least as much as optimal partner.
Since M' was not the first to be bumped.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
TMA: M asked W first!
There is M' who bumps M in TMA.
W prefers M'.
M' likes W at least as much as optimal partner.
 Since M' was not the first to be bumped.
M' and W is rogue couple in T.

Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
TMA: M asked W first!
There is M' who bumps M in TMA.
W prefers M'.
M' likes W at least as much as optimal partner.
Since M' was not the first to be bumped.
M' and W is rogue couple in T.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
 Not necessarily first in list.
 Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
 First man M to lose optimal partner.
 Better partner W for M.
 Different stable pairing T.
 TMA: M asked W first!
 There is M' who bumps M in TMA.
 W prefers M'.
 M' likes W at least as much as optimal partner.
 Since M' was not the first to be bumped.
 M' and W is rogue couple in T.

Thm: woman pessimal.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
 Not necessarily first in list.
 Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
 First man M to lose optimal partner.
 Better partner W for M.
 Different stable pairing T.
 TMA: M asked W first!
 There is M' who bumps M in TMA.
 W prefers M'.
 M' likes W at least as much as optimal partner.
 Since M' was not the first to be bumped.
 M' and W is rogue couple in T.

Thm: woman pessimal.

Man optimal \implies Woman pessimal.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
 Not necessarily first in list.
 Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
 First man M to lose optimal partner.
 Better partner W for M.
 Different stable pairing T.
 TMA: M asked W first!
 There is M' who bumps M in TMA.
 W prefers M'.
 M' likes W at least as much as optimal partner.
 Since M' was not the first to be bumped.
 M' and W is rogue couple in T.

Thm: woman pessimal.

Man optimal \implies Woman pessimal.
Woman optimal \implies Man pessimal.
Graphs

\[G = (V, E) \]
...Graphs...

\[G = (V, E) \]

\[V - \text{set of vertices.} \]
...Graphs...

\[G = (V, E) \]
- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.
Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm:
\[\text{Sum of degrees is } 2 \cdot |E| \]

Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected:
If there is a path between them.

Connected Component: maximal set of connected vertices.
Connected Graph: one connected component.
Graphs...

\[G = (V, E) \]
- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.
Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).

Edge is incident to 2 vertices.
Degree of vertices is total incidences.
Pair of Vertices are Connected: If there is a path between them.
Connected Component: maximal set of connected vertices.
Connected Graph: one connected component.
Graphs

\[G = (V, E) \]
- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is \(2 |E| \).

Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected: If there is a path between them.
Connected Component: maximal set of connected vertices.
Connected Graph: one connected component.
Graphs

\[G = (V, E) \]
- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is \(2 |E| \).

Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected: If there is a path between them.

Connected Component: maximal set of connected vertices.
Connected Graph: one connected component.
...Graphs...

\[G = (V, E) \]
- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.

Thm: Sum of degrees is \(2 |E| \).

Edge is incident to 2 vertices.

Pair of Vertices are Connected:
- If there is a path between them.

Connected Component: maximal set of connected vertices.

Connected Graph: one connected component.
...Graphs...

\[G = (V, E) \]
- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.

In-degree, Out-degree.
...Graphs...

\[G = (V, E) \]
- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.

In-degree, Out-degree.

Thm: Sum of degrees is 2\(|E|\).
Graphs

\[G = (V, E) \]
- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
- In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).
Edge is incident to 2 vertices.
\[G = (V, E) \]
\[V \text{ - set of vertices.} \]
\[E \subseteq V \times V \text{ - set of edges.} \]

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.

In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).

Edge is incident to 2 vertices.

Degree of vertices is total incidences.
Graphs

\[G = (V, E) \]
\(V \) - set of vertices.
\(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).
Edge is incident to 2 vertices.
Degree of vertices is total incidences.
Graphs...

\[G = (V, E) \]
\begin{itemize}
 \item \(V \) - set of vertices.
 \item \(E \subseteq V \times V \) - set of edges.
\end{itemize}

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected:
Graphs...

\[G = (V, E) \]
\[V \text{ - set of vertices.} \]
\[E \subseteq V \times V \text{ - set of edges.} \]

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected:
If there is a path between them.
Graphs

\[G = (V, E) \]
- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
 - In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).
 - Edge is incident to 2 vertices.
 - Degree of vertices is total incidences.

Pair of Vertices are Connected:
 - If there is a path between them.
Graphs...

\[G = (V, E) \]
\[V \text{ - set of vertices.} \]
\[E \subseteq V \times V \text{ - set of edges.} \]

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.

In-degree, Out-degree.

Thm: Sum of degrees is \(2|E|\).

Edge is incident to 2 vertices.

Degree of vertices is total incidences.

Pair of Vertices are Connected:

If there is a path between them.

Connected Component: maximal set of connected vertices.
Graphs

\[G = (V, E) \]
- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
- In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).
- Edge is incident to 2 vertices.
- Degree of vertices is total incidences.

Pair of Vertices are Connected:
- If there is a path between them.

Connected Component: maximal set of connected vertices.
Graphs

\[G = (V, E) \]
\[V - \text{set of vertices.} \]
\[E \subseteq V \times V - \text{set of edges.} \]

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected:
If there is a path between them.

Connected Component: maximal set of connected vertices.
Connected Graph: one connected component.
Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.
Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
 - Take a walk using each edge at most once.
Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
- Take a walk using each edge at most once.
- **Property:** return to starting point.
Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
Take a walk using each edge at most once.

Property: return to starting point.
Proof Idea: Even degree.
Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
- **Take a walk using each edge at most once.**
- **Property:** return to starting point.
 - Proof Idea: Even degree.

Recurse on connected components.
Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
 Take a walk using each edge at most once.
 Property: return to starting point.
 Proof Idea: Even degree.

Recurse on connected components.
Put together.
Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
- **Take a walk using each edge at most once.**
- **Property:** return to starting point.
 - Proof Idea: Even degree.
- **Recurse on connected components.**
- **Put together.**
 - **Property:** walk visits every component.
Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
- Take a walk using each edge at most once.
- **Property:** return to starting point.
 - Proof Idea: Even degree.

Recurse on connected components.
Put together.
- **Property:** walk visits every component.
 - Proof Idea: Original graph connected.
Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
- Take a walk using each edge at most once.
- **Property:** return to starting point.
 - Proof Idea: Even degree.

Recurse on connected components.
Put together.
- **Property:** walk visits every component.
 - Proof Idea: Original graph connected.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Given $G = (V, E)$, a coloring of G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors. Fewer colors than number of vertices.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!
Planar graphs and maps.

Planar graph coloring \equiv map coloring.
Planar graphs and maps.

Planar graph coloring \equiv map coloring.

Four color theorem is about planar graphs!
Six color theorem.

Theorem: Every planar graph can be colored with six colors.
Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph where $v > 2$.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph where \(v > 2 \).
From Euler’s Formula.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph where \(v > 2 \).

From Euler’s Formula.

Total degree: \(2e \)
Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph where \(v > 2 \).

From Euler’s Formula.

Total degree: \(2e \)
Average degree: \(\leq \frac{2e}{v} \)
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph where \(v > 2 \).
 From Euler’s Formula.

Total degree: \(2e \)
Average degree: \(\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \)
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph where $v > 2$.
 From Euler’s Formula.

Total degree: $2e$
Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph where $v > 2$.
 From Euler’s Formula.

Total degree: $2e$
Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph where $v > 2$.
 From Euler’s Formula.

Total degree: $2e$
Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.

Six color theorem.
Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph where $v > 2$.
 From Euler’s Formula.

Total degree: $2e$
Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.
 Remove vertex v of degree at most 5.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph where $v > 2$.
From Euler's Formula.

Total degree: $2e$

Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph where \(v > 2 \).
 From Euler’s Formula.

Total degree: \(2e \)
Average degree: \(\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v} \).

There exists a vertex with degree \(< 6 \) or at most 5.
 Remove vertex \(v \) of degree at most 5.
 Inductively color remaining graph.
 Color is available for \(v \) since only five neighbors...
Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph where \(v > 2 \).
From Euler’s Formula.

Total degree: \(2e \)
Average degree: \(\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v} \).

There exists a vertex with degree \(< 6 \) or at most 5.

- Remove vertex \(v \) of degree at most 5.
- Inductively color remaining graph.
- Color is available for \(v \) since only five neighbors... and only five colors are used.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph where \(v > 2 \).
From Euler’s Formula.

Total degree: \(2e \)
Average degree: \(\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v} \).

There exists a vertex with degree \(< 6 \) or at most 5.

Remove vertex \(v \) of degree at most 5.
Inductively color remaining graph.
Color is available for \(v \) since only five neighbors... and only five colors are used.
Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.
Five color theorem: summary.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Theorem: Every planar graph can be colored with five colors.
Five color theorem: summary.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Theorem: Every planar graph can be colored with five colors.

Proof:
Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Theorem: Every planar graph can be colored with five colors.

Proof: Again with the degree 5 vertex.
Five color theorem: summary.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Theorem: Every planar graph can be colored with five colors.

Proof: Again with the degree 5 vertex. Again recurse.
Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Theorem: Every planar graph can be colored with five colors.

Proof: Again with the degree 5 vertex. Again recurse.
Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Theorem: Every planar graph can be colored with five colors.

Proof: Again with the degree 5 vertex. Again recurse.

Either switch green.
Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Theorem: Every planar graph can be colored with five colors.

Proof: Again with the degree 5 vertex. Again recurse.

Either switch green.
Or try switching orange.
Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Theorem: Every planar graph can be colored with five colors.

Proof: Again with the degree 5 vertex. Again recurse.

Either switch green.
Or try switching orange.
One will work.
Graph Types: Complete Graph.

- Complete Graph, K_n, $|V| = n$ where every edge is present.
- Degree of vertex: $|V| - 1$.
- Very connected, lots of edges: $n(n-1)/2$.

![Diagram of Complete Graphs](image-url)
Graph Types: Complete Graph.

$K_n, |V| = n$
Graph Types: Complete Graph.

\[K_n, |V| = n \]

every edge present.
Graph Types: Complete Graph.

$K_n, |V| = n$

every edge present.
degree of vertex?
Graph Types: Complete Graph.

$K_n, |V| = n$

every edge present.
degree of vertex? $|V| - 1$.
Graph Types: Complete Graph.

K_n, $|V| = n$

- every edge present.
- degree of vertex? $|V| - 1$.

Very connected.
Graph Types: Complete Graph.

\[K_n, \ |V| = n \]

every edge present.

degree of vertex? \(|V| - 1 \).

Very connected.

Lots of edges:
Graph Types: Complete Graph.

\[K_n, \ |V| = n \]

every edge present.

degree of vertex? \(|V| - 1 \).

Very connected.

Lots of edges: \(n(n - 1)/2 \).
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- An acyclic graph where any edge addition creates a cycle.

To tree or not to tree!

Property: Can remove a single node and break into components of size at most $|V| / 2$.

- Diagram of a tree with 4 nodes.
- Diagram of a cycle graph.
- Diagram of a graph with multiple connected components.
Trees.

Definitions:

A connected graph without a cycle.
Trees.

Definitions:

A connected graph without a cycle.
A connected graph with $|V| - 1$ edges.
Trees.

Definitions:

A connected graph without a cycle.
A connected graph with $|V| - 1$ edges.
A connected graph where any edge removal disconnects it.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- An acyclic graph where any edge addition creates a cycle.
Trees.

Definitions:

A connected graph without a cycle.
A connected graph with $|V| - 1$ edges.
A connected graph where any edge removal disconnects it.
An acyclic graph where any edge addition creates a cycle.
Trees.

Definitions:

A connected graph without a cycle.
A connected graph with $|V| - 1$ edges.
A connected graph where any edge removal disconnects it.
An acyclic graph where any edge addition creates a cycle.

To tree or not to tree!
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- An acyclic graph where any edge addition creates a cycle.

To tree or not to tree!

Minimally connected, minimum number of edges to connect.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- An acyclic graph where any edge addition creates a cycle.

To tree or not to tree!

Minimally connected, minimum number of edges to connect.

Property:
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- An acyclic graph where any edge addition creates a cycle.

To tree or not to tree!

- Minimally connected, minimum number of edges to connect.

Property:

- Can remove a single node and break into components of size at most $|V|/2$.
Hypercube

Hypercubes.
Hypercubes. Really connected.
Hypercubes. Really connected. $|V| \log |V|$ edges!
Hypercubes. Really connected. $|V| \log |V|$ edges!

Also represents bit-strings nicely.
Hypercubes. Really connected. \(|V| \log |V|\) edges!
Also represents bit-strings nicely.
Hypercubes. Really connected. $|V| \log |V|$ edges!
Also represents bit-strings nicely.

$G = (V, E)$
Hypercube

Hypercubes. Really connected. $|V| \log |V|$ edges!
Also represents bit-strings nicely.

\[G = (V, E) \]
\[|V| = \{0, 1\}^n, \]
Hypercubes. Really connected. $|V| \log |V|$ edges!
Also represents bit-strings nicely.

$G = (V, E)$

$|V| = \{0, 1\}^n,$

$|E| = \{(x, y) | x \text{ and } y \text{ differ in one bit position.}\}$
Hypercubes. Really connected. $|V| \log |V|$ edges!
Also represents bit-strings nicely.

$G = (V, E)$
$|V| = \{0, 1\}^n,$
$|E| = \{(x, y)|x \text{ and } y \text{ differ in one bit position.}\}$
A 0-dimensional hypercube is a node labelled with the empty string of bits.
Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An \(n \)-dimensional hypercube consists of a 0-subcube (1-subcube) which is a \(n - 1 \)-dimensional hypercube with nodes labelled \(0x \) (\(1x \)) with the additional edges \((0x, 1x)\).
A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a $n-1$-dimensional hypercube with nodes labelled $0x$ ($1x$) with the additional edges $(0x, 1x)$.
A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a $n-1$-dimensional hypercube with nodes labelled $0x$ ($1x$) with the additional edges $(0x, 1x)$.

![Diagram of a 3-dimensional hypercube](image)
Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a $n-1$-dimensional hypercube with nodes labelled $0x$ ($1x$) with the additional edges $(0x, 1x)$.

![Diagram of 2-dimensional hypercube](image1)

![Diagram of 3-dimensional hypercube](image2)
Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a $n-1$-dimensional hypercube with nodes labelled $0x$ ($1x$) with the additional edges $(0x, 1x)$.
Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a $n - 1$-dimensional hypercube with nodes labelled $0x$ ($1x$) with the additional edges $(0x, 1x)$.
Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An \(n \)-dimensional hypercube consists of a 0-subcube (1-subcube) which is a \(n–1 \)-dimensional hypercube with nodes labelled \(0x \) (1x) with the additional edges \((0x,1x)\).
Rudrata Cycle: cycle that visits every node.
Rudrata Cycle: cycle that visits every node. Eulerian?

Large Cuts: Cutting off k nodes needs $\geq k$ edges.

Best cut? Cut apart subcubes: cuts off 2^n nodes with $2^n - 1$ edges.

FYI: Also cuts represent boolean functions.

Nice Paths between nodes. Get from 000100 to 101000.

000100 \rightarrow 100100 \rightarrow 101100 \rightarrow 101000

Correct bits in string, moves along path in hypercube!

Good communication network!
Hypercube: properties

Rudrata Cycle: cycle that visits every node.
Eulerian? If n is even.

FYI: Also cuts represent boolean functions.

Nice Paths between nodes.
Get from 000100 to 101000.

$000100 \rightarrow 100100 \rightarrow 101100 \rightarrow 101000$

Correct bits in string, moves along path in hypercube!

Good communication network!
Rudrata Cycle: cycle that visits every node.
Eulerian? If \(n \) is even.

Large Cuts: Cutting off \(k \) nodes needs \(\geq k \) edges.
Hypercube: properties

Rudrata Cycle: cycle that visits every node.
Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
Best cut?
Hypercube: properties

Rudrata Cycle: cycle that visits every node. Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges. Best cut? Cut apart subcubes:
Rudrata Cycle: cycle that visits every node.
 Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
 Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.
Hypercube: properties

Rudrata Cycle: cycle that visits every node. Eulerian? If \(n \) is even.

Large Cuts: Cutting off \(k \) nodes needs \(\geq k \) edges. Best cut? Cut apart subcubes: cuts off \(2^n \) nodes with \(2^{n-1} \) edges. FYI:
Rudrata Cycle: cycle that visits every node.
 Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
 Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.
 FYI: Also cuts represent boolean functions.
Hypercube: properties

Rudrata Cycle: cycle that visits every node.
Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.
FYI: Also cuts represent boolean functions.
Hypercube: properties

Rudrata Cycle: cycle that visits every node. Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.
FYI: Also cuts represent boolean functions.

Nice Paths between nodes.
Rudrata Cycle: cycle that visits every node.
 Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
 Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.

FYI: Also cuts represent boolean functions.

Nice Paths between nodes.
 Get from 000100 to 101000.
Rudrata Cycle: cycle that visits every node.
 Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
 Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.

FYI: Also cuts represent boolean functions.

Nice Paths between nodes.
 Get from 000100 to 101000.
 000100 \rightarrow 100100 \rightarrow 101100 \rightarrow 101000

Correct bits in string, moves along path in hypercube!
Good communication network!
Rudrata Cycle: cycle that visits every node.
 Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
 Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.

FYI: Also cuts represent boolean functions.

Nice Paths between nodes.
 Get from 000100 to 101000.
 $000100 \rightarrow 100100 \rightarrow 101100 \rightarrow 101000$
 Correct bits in string, moves along path in hypercube!
Rudrata Cycle: cycle that visits every node.
 Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
 Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.

FYI: Also cuts represent boolean functions.

Nice Paths between nodes.
 Get from 000100 to 101000.
 000100 \rightarrow 100100 \rightarrow 101100 \rightarrow 101000
 Correct bits in string, moves along path in hypercube!
Hypercube: properties

Rudrata Cycle: cycle that visits every node.
 Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
 Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.
 FYI: Also cuts represent boolean functions.

Nice Paths between nodes.
 Get from 000100 to 101000.
 000100 \rightarrow 100100 \rightarrow 101100 \rightarrow 101000
 Correct bits in string, moves along path in hypercube!

Good communication network!
Arithmetic modulo m.
Elements of equivalence classes of integers.
...Modular Arithmetic...

Arithmetic modulo m.
Elements of equivalence classes of integers.
$\{0, \ldots, m-1\}$
Arithmetic modulo m.
Elements of equivalence classes of integers.
\{0, \ldots, m - 1\}
and integer $i \equiv a \pmod{m}$
Arithmetic modulo m.
Elements of equivalence classes of integers.
\{0, \ldots, m - 1\}
and integer $i \equiv a \pmod{m}$
\[i = a + km \text{ for integer } k. \]
Arithmetic modulo m.

Elements of equivalence classes of integers.
\[\{0, \ldots, m-1\} \]

and integer $i \equiv a \pmod{m}$

- if $i = a + km$ for integer k.
- or if the remainder of i divided by m is a.

Can do calculations by taking remainders at the beginning, in the middle or at the end.

\[
\begin{align*}
58 + 32 &= 90 = 6 \pmod{7} \\
58 + 32 &= 2 + 4 = 6 \pmod{7} \\
58 + 32 &= 2 + (-3) = -1 = 6 \pmod{7}
\end{align*}
\]

Negative numbers work the way you are used to.

\[
\begin{align*}
-3 &= 0 \pmod{7} \\
-3 &= 7 \pmod{7} \\
-3 &= 4 \pmod{7}
\end{align*}
\]

Additive inverses are intuitively negative numbers.
Arithmetic modulo m.

Elements of equivalence classes of integers.

$\{0, \ldots, m-1\}$

and integer $i \equiv a \pmod{m}$

if $i = a + km$ for integer k.

or if the remainder of i divided by m is a.
Modular Arithmetic...

Arithmetic modulo m.
Elements of equivalence classes of integers.
{0, ..., $m - 1$}
and integer $i \equiv a \pmod{m}$
if $i = a + km$ for integer k.
or if the remainder of i divided by m is a.

Can do calculations by taking remainders at the beginning,
Arithmetic modulo m. Elements of equivalence classes of integers.
\{0, \ldots, m - 1\}
and integer $i \equiv a \pmod{m}$
if $i = a + km$ for integer k.

or if the remainder of i divided by m is a.

Can do calculations by taking remainders at the beginning, in the middle.
Arithmetic modulo m.
Elements of equivalence classes of integers.
\{0, \ldots, m-1\}
and integer $i \equiv a \pmod{m}$
if $i = a + km$ for integer k.
or if the remainder of i divided by m is a.

Can do calculations by taking remainders
at the beginning,
in the middle
or at the end.
Arithmetic modulo m.

Elements of equivalence classes of integers.

\[\{0, \ldots, m-1\} \]

and integer $i \equiv a \pmod{m}$

if $i = a + km$ for integer k.

or if the remainder of i divided by m is a.

Can do calculations by taking remainders

at the beginning,

in the middle

or at the end.

$58 + 32 = 90 = 6 \pmod{7}$
...Modular Arithmetic...

Arithmetic modulo \(m \).

Elements of equivalence classes of integers.
\[\{0, \ldots, m - 1\} \]
and integer \(i \equiv a \) \((\text{mod } m)\)

if \(i = a + km \) for integer \(k \).

or if the remainder of \(i \) divided by \(m \) is \(a \).

Can do calculations by taking remainders
at the beginning,
in the middle
or at the end.

\[58 + 32 = 90 = 6 \] \((\text{mod } 7)\)
\[58 + 32 = 2 + 4 = 6 \] \((\text{mod } 7)\)

Negative numbers work the way you are used to.

\[-3 = 7 \]
\[-3 = 7 \]
\[-3 = 4 \] \((\text{mod } 7)\)

Additive inverses are intuitively negative numbers.
Arithmetic modulo m.
Elements of equivalence classes of integers.
\[\{0, \ldots, m-1\} \]
and integer $i \equiv a \pmod{m}$
if $i = a + km$ for integer k.
 or if the remainder of i divided by m is a.

Can do calculations by taking remainders
at the beginning,
in the middle
 or at the end.

\[
58 + 32 = 90 = 6 \pmod{7}
\]
\[
58 + 32 = 2 + 4 = 6 \pmod{7}
\]
\[
58 + 32 = 2 + -3 = -1 = 6 \pmod{7}
\]
Modular Arithmetic...

Arithmetic modulo m.

Elements of equivalence classes of integers.

\[\{0, \ldots, m-1\} \]

and integer $i \equiv a \pmod{m}$

if $i = a + km$ for integer k.

or if the remainder of i divided by m is a.

Can do calculations by taking remainders

at the beginning,

in the middle

or at the end.

\[58 + 32 = 90 = 6 \pmod{7} \]
\[58 + 32 = 2 + 4 = 6 \pmod{7} \]
\[58 + 32 = 2 + (-3) = -1 = 6 \pmod{7} \]
Arithmetic modulo m.

Elements of equivalence classes of integers.
\[
\{0, \ldots, m - 1\}
\]
and integer $i \equiv a \pmod{m}$
if $i = a + km$ for integer k.

or if the remainder of i divided by m is a.

Can do calculations by taking remainders
at the beginning,
in the middle
or at the end.

\[
58 + 32 = 90 = 6 \pmod{7}
\]
\[
58 + 32 = 2 + 4 = 6 \pmod{7}
\]
\[
58 + 32 = 2 + (-3) = -1 = 6 \pmod{7}
\]

Negative numbers work the way you are used to.
Arithmetic modulo m.

Elements of equivalence classes of integers.

$\{0, \ldots, m-1\}$

and integer $i \equiv a \pmod{m}$

if $i = a + km$ for integer k.

or if the remainder of i divided by m is a.

Can do calculations by taking remainders

at the beginning,

in the middle

or at the end.

$58 + 32 = 90 = 6 \pmod{7}$

$58 + 32 = 2 + 4 = 6 \pmod{7}$

$58 + 32 = 2 + -3 = -1 = 6 \pmod{7}$

Negative numbers work the way you are used to.

$-3 = 0 - 3 = 7 - 3 = 4 \pmod{7}$
Arithmetic modulo m.
Elements of equivalence classes of integers.
\{0, \ldots, m - 1\}
and integer $i \equiv a \pmod{m}$
if $i = a + km$ for integer k.
or if the remainder of i divided by m is a.

Can do calculations by taking remainders
at the beginning,
in the middle
or at the end.

\[
\begin{align*}
58 + 32 &= 90 = 6 \pmod{7} \\
58 + 32 &= 2 + 4 = 6 \pmod{7} \\
58 + 32 &= 2 + -3 = -1 = 6 \pmod{7}
\end{align*}
\]

Negative numbers work the way you are used to.
\[
-3 = 0 - 3 = 7 - 3 = 4 \pmod{7}
\]
Arithmetic modulo m.
Elements of equivalence classes of integers.
\[\{0, \ldots, m - 1\} \]
and integer $i \equiv a \pmod{m}$
if $i = a + km$ for integer k.
or if the remainder of i divided by m is a.

Can do calculations by taking remainders
at the beginning,
in the middle
or at the end.

\[
\begin{align*}
58 + 32 &= 90 = 6 \pmod{7} \\
58 + 32 &= 2 + 4 = 6 \pmod{7} \\
58 + 32 &= 2 + (-3) = -1 = 6 \pmod{7}
\end{align*}
\]

Negative numbers work the way you are used to.
\[-3 = 0 - 3 = 7 - 3 = 4 \pmod{7}\]

Additive inverses are intuitively negative numbers.
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7}$?
Modular Arithmetic and multiplicative inverses.

$$3^{-1} \pmod{7}? \ 5$$
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7} \text{?}$ 5
$5^{-1} \pmod{7} \text{?}$
Modular Arithmetic and multiplicative inverses.

\[3^{-1} \pmod{7}? \quad 5 \]
\[5^{-1} \pmod{7}? \quad 3 \]
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7} \equiv 5$
$5^{-1} \pmod{7} \equiv 3$

Inverse Unique?

No, no, no....

See, ... no inverse!
Modular Arithmetic and multiplicative inverses.

3\(^{-1}\) (mod 7)? 5
5\(^{-1}\) (mod 7)? 3

Inverse Unique? Yes.
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7} \text{? } 5$
$5^{-1} \pmod{7} \text{? } 3$

Inverse Unique? Yes.
Proof: a and b inverses of $x \pmod{n}$
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7} \equiv 5$

$5^{-1} \pmod{7} \equiv 3$

Inverse Unique? Yes.

Proof: a and b inverses of $x \pmod{n}$

$ax = bx = 1 \pmod{n}$
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7}$? 5
$5^{-1} \pmod{7}$? 3

Inverse Unique? Yes.

Proof: a and b inverses of $x \pmod{n}$

$ax = bx = 1 \pmod{n}$

$axb = bxb = b \pmod{n}$
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7}$? 5
$5^{-1} \pmod{7}$? 3

Inverse Unique? Yes.

Proof: a and b inverses of $x \pmod{n}$

\[ax = bx = 1 \pmod{n} \]
\[axb = bxb = b \pmod{n} \]
\[a = b \pmod{n}. \]
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7} \text{? } 5$

$5^{-1} \pmod{7} \text{? } 3$

Inverse Unique? Yes.

Proof: a and b inverses of $x \pmod{n}$

$$ax = bx = 1 \pmod{n}$$

$$AXB = BXB = B \pmod{n}$$

$$A = B \pmod{n}.$$

$3^{-1} \pmod{6} \text{?}$
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7}$? 5
$5^{-1} \pmod{7}$? 3

Inverse Unique? Yes.
Proof: a and b inverses of $x \pmod{n}$

$ax = bx = 1 \pmod{n}$

$axb = bxb = b \pmod{n}$

$a = b \pmod{n}$.

$3^{-1} \pmod{6}$? No, no, no....
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7} \text{? } 5$
$5^{-1} \pmod{7} \text{? } 3$

Inverse Unique? Yes.
Proof: a and b inverses of $x \pmod{n}$
\[ax = bx = 1 \pmod{n} \]
\[axb = bxb = b \pmod{n} \]
\[a = b \pmod{n}. \]

$3^{-1} \pmod{6} \text{? } \text{No, no, no...}$
\{3(1), 3(2), 3(3), 3(4), 3(5)\}
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7}$? 5
$5^{-1} \pmod{7}$? 3

Inverse Unique? Yes.
Proof: a and b inverses of $x \pmod{n}$

\[ax = bx = 1 \pmod{n} \]
\[axb = bxb = b \pmod{n} \]
\[a = b \pmod{n} . \]

$3^{-1} \pmod{6}$? No, no, no....

\{3(1), 3(2), 3(3), 3(4), 3(5)\}
\{3, 6, 3, 6, 3\}
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7}$? 5

$5^{-1} \pmod{7}$? 3

Inverse Unique? Yes.

Proof: a and b inverses of $x \pmod{n}$

\[ax = bx = 1 \pmod{n} \]

\[axb = bxb = b \pmod{n} \]

$a = b \pmod{n}$.

$3^{-1} \pmod{6}$? No, no, no....

\[\{3(1), 3(2), 3(3), 3(4), 3(5)\} \]
\[\{3, 6, 3, 6, 3\} \]
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7}$? 5
$5^{-1} \pmod{7}$? 3

Inverse Unique? Yes.
Proof: a and b inverses of $x \pmod{n}$

\[
\begin{align*}
ax &= bx = 1 \pmod{n} \\
axb &= bxb = b \pmod{n} \\
a &= b \pmod{n}.
\end{align*}
\]

$3^{-1} \pmod{6}$? No, no, no....

\[
\{3(1), 3(2), 3(3), 3(4), 3(5)\}
\]

\[
\{3, 6, 3, 6, 3\}
\]

See,
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7}$? 5
$5^{-1} \pmod{7}$? 3

Inverse Unique? Yes.

Proof: a and b inverses of $x \pmod{n}$

\[
ax = bx = 1 \pmod{n}
\]
\[
axb = bxb = b \pmod{n}
\]
\[
a = b \pmod{n}.
\]

$3^{-1} \pmod{6}$? No, no, no....

\[
\{3(1), 3(2), 3(3), 3(4), 3(5)\}
\]
\[
\{3, 6, 3, 6, 3\}
\]

See,... no inverse!
Modular Arithmetic Inverses and GCD

\[x \text{ has inverse modulo } m \text{ if and only if } \gcd(x, m) = 1. \]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:

\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.

$gcd(x, y) = gcd(y, x - y)$.

Give recursive Algorithm!

Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns d, a, b where $d = gcd(x, y)$ and $d = ax + by$.

Multiplicative inverse of (x, m).

egcd(x, m) = $(1, a, b)$

a is inverse!

$1 = ax + bm = ax (\mod m)$.

Idea: egcd. gcd produces 1 by adding and subtracting multiples of x and y.

Modular Arithmetic Inverses and GCD

\(x \) has inverse modulo \(m \) if and only if \(\gcd(x, m) = 1 \).

Group structures more generally.

Proof Idea:
\{0, \ldots, (m-1)x\} are distinct modulo \(m \) if and only if \(\gcd(x, m) = 1 \).

Finding gcd.
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{$0x, \ldots, (m-1)x$} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
$gcd(x, y) = gcd(y, x - y)$
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \mod y)\].
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.

$gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y})$.

Give recursive Algorithm!
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{$0x, \ldots, (m-1)x$} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.

$gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y})$.

Give recursive Algorithm! Base Case?
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
$\{0x, \ldots, (m - 1)x\}$ are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
$gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y})$.

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{$0x, \ldots, (m - 1)x$} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \mod y) \]

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y)
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $\gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m-1)x\} are distinct modulo m if and only if $\gcd(x, m) = 1$.

Finding gcd.
$\gcd(x, y) = \gcd(y, x - y) = \gcd(y, x \mod{y})$.

Give recursive Algorithm! Base Case? $\gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{$0x, \ldots, (m - 1)x$} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[
gcd(x, y) = gcd(y, x - y) = gcd(y, x \mod y)
\]

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[
d = gcd(x, y)
\]
Modular Arithmetic Inverses and GCD

\(x \) has inverse modulo \(m \) if and only if \(\gcd(x, m) = 1 \).

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m-1)x\} are distinct modulo \(m \) if and only if \(\gcd(x, m) = 1 \).

Finding gcd.
\[\gcd(x, y) = \gcd(y, x - y) = \gcd(y, x \pmod{y}) \]

Give recursive Algorithm! Base Case? \(\gcd(x, 0) = x \).

Extended-gcd\((x, y)\) returns \((d, a, b)\)
\[d = \gcd(x, y) \text{ and } d = ax + by \]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y}).\]

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y) \text{ and } d = ax + by\]

Multiplicative inverse of (x, m).
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
$\{0x, \ldots, (m-1)x\}$ are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.

$gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y})$.

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)

\[d = gcd(x, y) \text{ and } d = ax + by \]

Multiplicative inverse of (x, m).

egcd$(x, m) = (1, a, b)$
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y}) \] .

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y) \text{ and } d = ax + by \]

Multiplicative inverse of (x, m).
\[egcd(x, m) = (1, a, b) \]
\[a \text{ is inverse!} \]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $\gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{$0x, \ldots, (m-1)x$} are distinct modulo m if and only if $\gcd(x, m) = 1$.

Finding gcd.
$\gcd(x, y) = \gcd(y, x - y) = \gcd(y, x \pmod{y})$.

Give recursive Algorithm! Base Case? $\gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
$d = \gcd(x, y)$ and $d = ax + by$

Multiplicative inverse of (x, m).
$\text{egcd}(x, m) = (1, a, b)$
a is inverse! $1 = ax + bm$
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{$0x, \ldots, (m - 1)x$} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y}). \]

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y) \text{ and } d = ax + by \]

Multiplicative inverse of (x, m).
\[egcd(x, m) = (1, a, b) \]
\[a \text{ is inverse! } 1 = ax + bm = ax \pmod{m}. \]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m-1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \mod y) \].

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y) \text{ and } d = ax + by \]

Multiplicative inverse of (x, m).
\egcd(x, m) = (1, a, b)
\[a \text{ is inverse disc } 1 = ax + bm = ax \mod m. \]

Idea: egcd.
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m-1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y}).\]

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y) \text{ and } d = ax + by\]

Multiplicative inverse of (x, m).
\[egcd(x, m) = (1, a, b)\]
\[a \text{ is inverse! } 1 = ax + bm = ax \pmod{m}.\]

Idea: egcd.
\[gcd \text{ produces 1}\]
Modular Arithmetic Inverses and GCD

\(x \) has inverse modulo \(m \) if and only if \(\gcd(x, m) = 1 \).

Group structures more generally.

Proof Idea:
\(\{0x, \ldots, (m-1)x\} \) are distinct modulo \(m \) if and only if \(\gcd(x, m) = 1 \).

Finding \(\gcd \).
\[
gcd(x, y) = \gcd(y, x - y) = \gcd(y, x \mod y)
\]

Give recursive Algorithm! Base Case? \(\gcd(x, 0) = x \).

Extended-\(\gcd(x, y) \) returns \((d, a, b)\)
\[
d = \gcd(x, y) \text{ and } d = ax + by
\]

Multiplicative inverse of \((x, m)\).
\[
egcd(x, m) = (1, a, b)
\]
\(a \) is inverse! \(1 = ax + bm = ax \mod m \).

Idea: \(\negcd \).
\(\gcd \) produces 1
by adding and subtracting multiples of \(x \) and \(y \)
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \ (mod\ y)).\]

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y)\ and\ d = ax + by\]

Multiplicative inverse of (x, m).
\[egcd(x, m) = (1, a, b)\]
\[a\ is\ inverse!\ 1 = ax + bm = ax\ (mod\ m).\]

Idea: egcd.
\[gcd\ produces\ 1\]
\[by\ adding\ and\ subtracting\ multiples\ of\ x\ and\ y\]
Hand calculation: egcd.

Extended GCD: egcd(7, 60) = 1.
Hand calculation: egcd.

Extended GCD: \(\text{egcd}(7, 60) = 1 \).

egcd(7, 60).
Hand calculation: egcd.

Extended GCD: $\text{egcd}(7, 60) = 1.$

$\text{egcd}(7, 60).$

$$7(0) + 60(1) = 60$$
Hand calculation: egcd.

Extended GCD: \(\text{egcd}(7, 60) = 1 \).
\[\text{egcd}(7, 60). \]

\[
\begin{align*}
7(0) + 60(1) & = 60 \\
7(1) + 60(0) & = 7
\end{align*}
\]
Hand calculation: egcd.

Extended GCD: \(\text{egcd}(7, 60) = 1 \).
\(\text{egcd}(7, 60) \).

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4
\end{align*}
\]
Hand calculation: egcd.

Extended GCD: \(\text{egcd}(7, 60) = 1 \).
\(\newline \text{egcd}(7, 60). \newline \)

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3
\end{align*}
\]
Hand calculation: egcd.

Extended GCD: \(\text{egcd}(7, 60) = 1 \).

\(\text{egcd}(7, 60) \).

\[
egin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]
Hand calculation: egcd.

Extended GCD: \(\text{egcd}(7, 60) = 1. \)
\(\text{egcd}(7, 60). \)

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]
Hand calculation: \text{egcd}.

Extended GCD: \text{egcd}(7,60) = 1.
\text{egcd}(7,60).

\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}

Confirm:
Hand calculation: egcd.

Extended GCD: \(\text{egcd}(7, 60) = 1 \).
\(\text{egcd}(7, 60) \).

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]

Confirm: \(-119 + 120 = 1\)
Hand calculation: egcd.

Extended GCD: \(\text{egcd}(7, 60) = 1 \).

\[
\begin{align*}
7(0) + 60(1) & = 60 \\
7(1) + 60(0) & = 7 \\
7(-8) + 60(1) & = 4 \\
7(9) + 60(-1) & = 3 \\
7(-17) + 60(2) & = 1
\end{align*}
\]

Confirm: \(-119 + 120 = 1\)

\[
d = e^{-1} = -17 = 43 \quad \text{(mod 60)}
\]
Midterm format

Time: 120 minutes.
Midterm format

Time: 120 minutes.

Some short answers.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well:

Know material fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
 Proofs, algorithms, properties.
 Not so much calculation.

See piazza for more resources.
 E.g., TA videos for past exams.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast,
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
Midterm format

Time: 120 minutes.

Some short answers.
Get at ideas that you learned.
Know material well: fast, correct.
Know material medium:
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower,
Midterm format

Time: 120 minutes.

Some short answers.
Get at ideas that you learned.

Know material well: fast, correct.
Know material medium: slower, less correct.

Some longer questions.
Proofs, algorithms, properties.
Not so much calculation.

See piazza for more resources.
E.g., TA videos for past exams.
Midterm format

Time: 120 minutes.

Some short answers.
Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well:
Midterm format

Time: 120 minutes.

Some short answers.
Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
Midterm format

Time: 120 minutes.

Some short answers.
Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
Proofs,
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
 Proofs, algorithms,
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
 Proofs, algorithms, properties.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
 Proofs, algorithms, properties.
 Not so much calculation.

See piazza for more resources.
E.g., TA videos for past exams.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
 Proofs, algorithms, properties.
 Not so much calculation.

See piazza for more resources. E.g., TA videos for past exams.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
 Proofs, algorithms, properties.
 Not so much calculation.

See piazza for more resources.
Midterm format

Time: 120 minutes.

Some short answers.
Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
Proofs, algorithms, properties.
Not so much calculation.

See piazza for more resources.
E.g., TA videos for past exams.
Wrapup.
Wrapup.

Other issues....
Wrapup.

Other issues....
sp18@eecs70.org
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!!
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!!!
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!!!!
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!!!!!
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!!!!!!
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!!!!!!!
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!!!!!!!!
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!!!!!!!!
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!!!!!!!!!!
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!!!!!!!!!!
Wrapup.

Other issues....
 sp18@eecs70.org
 Private message on piazza.

Good Studying!!!!!!!!!!!!!
Wrapup.

Other issues....
 sp18@eecs70.org
 Private message on piazza.

Good Studying!!!!!!!!!!!!!
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!!!!!!!!!!!!!
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!!!!!!!!!!!!!
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!!!!!!!!!!!!!!!!!!
Wrapup.

Other issues....
sp18@eecs70.org
Private message on piazza.

Good Studying!!!!!!!!!!!!!!!