Lecture 7. Outline.

- 1. Quickly finish isoperimetric inequality for hypercube.
- 2. Modular Arithmetic. Clock Math!!!
- 3. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!
- 4. Euclid's GCD Algorithm. A little tricky here!

Hypercube: Can't cut me!

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

 $(S, V - \overline{S})$ is cut. $(E \cap S \times (V - S))$ - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.

Isoperimetry.

For 3-space: The sphere minimizes surface area to volume. Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$. Ratio: $1/3r = \Theta(V^{-1/3})$. Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side. Tree: $\Theta(1/|V|)$. Hypercube: $\Theta(1)$. Surface Area is roughly at least the volume!

Proof of Large Cuts.

1/3

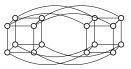
4/31

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:** Base Case: n = 1 V= {0,1}. $S = \{0\}$ has one edge leaving. $|S| = \phi$ has 0.

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An *n*-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x (1x) with the additional edges (0x, 1x).



Induction Step Idea

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

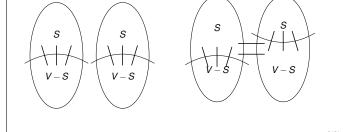
Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

5/31

Case 2: Count inside and across.



Induction Step	Induction Step. Case 2.	Hypercubes and Boolean Functions.
Thm: For any cut $(S, V - S)$ in the hypercube, the number of cut edges is at least the size of the small side, $ S $. Proof: Induction Step. Recursive definition: $H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_x \text{ that connect them.}$ $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$ $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other. Case 1: $ S_0 \le V_0 /2, S_1 \le V_1 /2$ Both S_0 and S_1 are small sides. So by induction. Edges cut in $H_0 \ge S_0 $. Edges cut in $H_1 \ge S_1 $.	Thm: For any cut $(S, V - S)$ in the hypercube, the number of cut edges is at least the size of the small side, $ S $. Proof: Induction Step. Case 2. $ S_0 \ge V_0 /2$. Recall Case 1: $ S_0 , S_1 \le V /2$ $ S_1 \le V_1 /2$ since $ S \le V /2$. $\implies \ge S_1 $ edges cut in E_1 . $ S_0 \ge V_0 /2 \implies V_0 - S \le V_0 /2$ $\implies \ge S_0 - S_0 $ edges cut in E_0 . Edges in E_x connect corresponding nodes. $\implies = S_0 - S_1 $ edges cut in E_x . Total edges cut: $\ge S_1 + V_0 - S_0 + S_0 - S_1 = V_0 $ $ V_0 = V /2 \ge S $. Also, case 3 where $ S_1 \ge V /2$ is symmetric.	The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$. Central area of study in computer science! Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$ Central object of study.
7/31	8/31	9/31
Next Up.	Clock Math	Day of the week.
Modular Arithmetic.	If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00. 16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12. What time is it in 100 hours? 101:00! or 5:00. $101 = 12 \times 8 + 5.$ 5 is the same as 101 for a 12 hour clock system. Clock time equivalent up to addition of any integer multiple of 12. Custom is only to use the representative in $\{12, 1,, 11\}$ (Almost remainder, except for 12 and 0 are equivalent.)	Today is Monday. What day is it a year from now? on February 6, 2018? Number days. 0 for Sunday, 1 for Monday,, 6 for Saturday. Today: day 2. 5 days from now. day 7 or day 0 or Sunday. 25 days from now. day 27 or day 6. $27 = (7)3 + 6$ two days are equivalent up to addition/subtraction of multiple of 7. 11 days from now is day 6 which is Saturday! What day is it a year from now? This year is not a leap year. So 365 days from now. Day 2+365 or day 367. Smallest representation: subtract 7 until smaller than 7. divide and get remainder. 367/7 leaves quotient of 52 and remainder 3. $365 = 7(52) + 3$ or February 6, 2018 is a Wednesday.
10/31	11/31	12/31

Years and years...

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 2. It is day $2 + 366 \times 20 + 365 \times 60$. Equivalent to? Hmm. What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 2. Get Day: $2 + 2 \times 20 + 1 \times 60 = 102$ Remainder when dividing by 7? $102 = 14 \times 7 + 4$. Or February 7, 2096 is Thursday!

```
Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.
Get Day: 2+2 \times 6+1 \times 4=18.
Or Day 4. February 6, 2095 is Thursday.
```

"Reduce" at any time in calculation!

Inverses and Factors.

Division: multiply by multiplicative inverse.

```
2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.
```

```
Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.
```

In modular arithmetic, 1 is the multiplicative identity element.

```
Multiplicative inverse of x \mod m is y \pmod{xy} = 1 \pmod{m}.
```

```
For 4 modulo 7 inverse is 2: 2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}.
```

Can solve $4x = 5 \pmod{7}$. $x = 3 \pmod{7}$ is $\binom{1}{100} (3) = 12 = 5 \pmod{7}$.

```
For 8 frond 10 (2006 fulltiplicative inverse!

x = 3 \pmod{7}

"Grepping factor 21-5" (mod 7).

8k - 12\ell is a multiple of four for any \ell and k \implies

8k \neq 1 \pmod{2} for any k.
```

Modular Arithmetic: refresher.

```
x is congruent to y modulo m or "x \equiv y \pmod{m}"
if and only if (x - y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y + km for some integer k.
```

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

```
or "a \equiv c \pmod{m} and b \equiv d \pmod{m}

\implies a+b \equiv c+d \pmod{m} and a \cdot b = c \cdot d \pmod{m}"
```

```
Proof: If a \equiv c \pmod{m}, then a = c + km for some integer k.
If b \equiv d \pmod{m}, then b = d + jm for some integer j.
Therefore, a + b = c + d + (k + j)m and since k + j is integer.
\implies a + b \equiv c + d \pmod{m}.
```

Can calculate with representative in $\{0, ..., m-1\}$.

Greatest Common Divisor and Inverses.

Thm:

```
If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.
```

```
\textbf{Proof} \implies :
```

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

```
\implies One must correspond to 1 modulo m. Inverse Exists!
```

Proof of Claim: If not distinct, then $\exists a, b \in \{0, \dots, m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

gcd(x,m) = 1

16/31

```
\implies Prime factorization of m and x do not contain common primes.
\implies (a-b) factorization contains all primes in m's factorization.
```

```
\Rightarrow (a-b) factorization contains all primes in ms factorization
```

So (a-b) has to be multiple of *m*.

 \implies $(a-b) \ge m$. But $a, b \in \{0, ..., m-1\}$. Contradiction.

Notation

 $x \pmod{m}$ or mod(x,m)- remainder of x divided by m in $\{0, \ldots, m-1\}$.

 $mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m$

 $\lfloor \frac{x}{m} \rfloor$ is quotient.

 $mod(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5$

Work in this system. $a \equiv b \pmod{m}$. Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

17/31

14/31

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$.

 $6 = 3 + 3 = 3 + 10 \pmod{7}$.

Generally, not 6 (mod 7) = 13 (mod 7). But probably won't take off points, still hard for us to read.

Proof review. Consequence.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo *m*.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo *m*.

```
For x = 4 and m = 6. All products of 4...

S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}

reducing (mod 6)

S = \{0, 4, 2, 0, 4, 2\}

Not distinct. Common factor 2. Can't be 1. No inverse.
```

For x = 5 and m = 6. $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

```
5x = 3 \pmod{6} What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)
```

```
4x = 3 \pmod{6} No solutions. Can't get an odd.
4x = 2 \pmod{6} Two solutions! x = 2.5 \pmod{6}
```

Very different for elements with inverses.

```
18/31
```

15/3

П

Proof Review 2: Bijections.	Finding inverses.	Inverses
If $gcd(x,m) = 1$. Then the function $f(a) = xa \mod m$ is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4. $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}$. Oh yeah. $f(0) = 0$. Bijection \equiv unique pre-image and same size. All the images are distinct. \implies unique pre-image for any image. x = 2, m = 4. f(1) = 2, f(2) = 0, f(3) = 2 Oh yeah. $f(0) = 0$. Not a bijection.	How to find the inverse? How to find if <i>x</i> has an inverse modulo <i>m</i> ? Find gcd (<i>x</i> , <i>m</i>). Greater than 1? No multiplicative inverse. Equal to 1? Mutliplicative inverse. Algorithm: Try all numbers up to <i>x</i> to see if it divides both <i>x</i> and <i>m</i> . Very slow.	Next up. Euclid's Algorithm. Runtime. Euclid's Extended Algorithm.
Refresh	Divisibility	More divisibility
Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from $0 + 8k$ for any $k \in \mathbb{N}$. Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$. Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from $0 + 9k$ for any $k \in \mathbb{N}$. 3 = gcd(6,9)! x has an inverse modulo <i>m</i> if and only if gcd(x,m) > 1? No. gcd(x,m) = 1? Yes. Now what?: Compute gcd! Compute Inverse modulo <i>m</i> .	Notation: $d x$ means "d divides x" or x = kd for some integer k. Fact: If $d x$ and $d y$ then $d (x+y)$ and $d (x-y)$. Is it a fact? Yes? No? Proof: $d x$ and $d y$ or $x = \ell d$ and $y = kd$ $\implies x - y = kd - \ell d = (k - \ell)d \implies d (x - y)$	Notation: $d x$ means " d divides x " or $x = kd$ for some integer k .Lemma 1: If $d x$ and $d y$ then $d y$ and $d \mod(x, y)$.Proof: $\mod(x,y) = x - \lfloor x/y \rfloor \cdot y$ $= x - \lfloor s \rfloor \cdot y$ for integer s $= kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$ $= (k - s\ell)d$ Therefore $d \mod(x, y)$. And $d y$ since it is in condition.Lemma 2: If $d y$ and $d \mod(x, y)$ then $d y$ and $d x$. Proof: Similar. Try this at home.GCD Mod Corollary: $gcd(x, y) = gcd(y, \mod(x, y))$. Proof: x and y have same set of common divisors as x and $\mod(x, y)$ by Lemma 1 and 2. Same common divisors \Longrightarrow largest is the same.

Euclid's algorithm.	Excursion: Value and Size.	Euclid procedure is fast.
GCD Mod Corollary: $gcd(x, y) = gcd(y, mod (x, y)).$ Hey, what's $gcd(7,0)$?7 since 7 divides 7 and 7 divides 0What's $gcd(x,0)$?x(define (euclid x y) (if (= y 0) x (euclid y (mod x y)))) ****Theorem: (euclid x y) = $gcd(x, y)$ if $x \ge y$.Proof: Use Strong Induction.Base Case: $y = 0$, "x divides y and x" \implies "x is common divisor and clearly largest."Induction Step:mod $(x, y) < y \le x$ when $x \ge y$ call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis computes $gcd(y, mod (x, y))$	Before discussing running time of gcd procedure What is the value of 1,000,000? one million or 1,000,000! What is the "size" of 1,000,000? Number of digits in base 10: 7. Number of bits (a digit in base 2): 21. For a number <i>x</i> , what is its size in bits? $n = b(x) \approx \log_2 x$	Theorem: (euclid x y) uses 2 <i>n</i> "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2,, y/2\}$? Check 2, check 3, check 4, check 5, check $y/2$. If $y \approx x$ roughly y uses n bits 2^{n-1} divisions! Exponential dependence on size! 101 bit number. $2^{100} \approx 10^{30} =$ "million, trillion, trillion" divisions! 2n is much faster! roughly 200 divisions.
which is $gcd(x, y)$ by GCD Mod Corollary.		
25/31		26/31 27/31
Algorithms at work.		Runtime Proof.
Trying everything		
Check 2, check 3, check 4, check 5, check $y/2$.		(define (euclid x y)
"(gcd x y)" at work.		(if (= y 0)
		x (euclid y (mod x y))))
euclid(700,568) euclid(568, 132)	Maybe Break.	Theorem (and ideal) uses $O(r)$ "divisions" where $r = h(r)$
euclid(132, 40)		Theorem: (euclid x y) uses $O(n)$ "divisions" where $n = b(x)$. Proof:
euclid(40, 12) euclid(12, 4)		
euclid(4, 0)		Fact: First arg decreases by at least factor of two in two recursive calls.
4		After $2\log_2 x = O(n)$ recursive calls, argument x is 1 bit number.
Notice: The first argument decreases rapidly. At least a factor of 2 in two recursive calls.		One more recursive call to finish. 1 division per recursive call. O(n) divisions.
(The second is less than the first.)		
28/31		29/31 30/31

Runtime Proof (continued.)	Finding an inverse?	Euclid's GCD algorithm.
(define (euclid x y) (if (= y 0) x (euclid y (mod x y))))		
Fact: First arg decreases by at least factor of two in two recursive calls. Proof of Fact: Recall that first argument decreases every call. Case 1: $y < x/2$, first argument is y \Rightarrow true in one recursive call; Case 2: Will show " $y \ge x/2$ " \Rightarrow " $mod(x, y) \le x/2$." mod(x, y) is second argument in next recursive call, and becomes the first argument in the next one. When $y \ge x/2$, then $\lfloor \frac{x}{y} \rfloor = 1$, $mod(x, y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \le x - x/2 = x/2$	We showed how to efficiently tell if there is an inverse. Extend euclid to find inverse.	<pre>(define (euclid x y) (if (= y 0) x (euclid y (mod x y)))) Computes the gcd(x,y) in O(n) divisions. For x and m, if gcd(x,m) = 1 then x has an inverse modulo m.</pre>
Multiplicative Inverse.	Extended GCD	Make <i>d</i> out of <i>x</i> and <i>y</i> ?
GCD algorithm used to tell if there is a multiplicative inverse. How do we find a multiplicative inverse?	Euclid's Extended GCD Theorem: For any x, y there are integers a, b where ax + by = d where $d = gcd(x, y)$. "Make d out of sum of multiples of x and y." What is multiplicative inverse of x modulo m? By extended GCD theorem, when $gcd(x, m) = 1$. ax + bm = 1 $ax \equiv 1 - bm \equiv 1 \pmod{m}$. So a multiplicative inverse of x (mod m)!! Example: For x = 12 and y = 35, $gcd(12, 35) = 1$. (3) $12 + (-1)35 = 1$. a = 3 and $b = -1$. The multiplicative inverse of 12 (mod 35) is 3.	gcd (35, 12) $gcd (12, 11) ;; gcd (12, 35%12)$ $gcd (11, 1) ;; gcd (11, 12%11)$ $gcd (1, 0)$ 1 How did gcd get 11 from 35 and 12? $35 - \lfloor \frac{35}{12} \rfloor 12 = 35 - (2)12 = 11$ How does gcd get 1 from 12 and 11? $12 - \lfloor \frac{12}{11} \rfloor 11 = 12 - (1)11 = 1$ Algorithm finally returns 1. But we want 1 from sum of multiples of 35 and 12? Get 1 from 12 and 11. 1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35 Get 11 from 35 and 12 and plugin Simplify. $a = 3$ and $b = -1$

33/3

Extended GCD Algorithm.	Extended GCD Algorithm.	Correctness.
<pre>ext-gcd(x,y) if y = 0 then return(x, 1, 0) else</pre>	ext-gcd(x,y) if y = 0 then return(x, 1, 0) else (d, a, b) := ext-gcd(y, mod(x,y)) return (d, b, a - floor(x/y) $*$ b) Theorem: Returns (d, a, b), where $d = gcd(a, b)$ and d = ax + by.	Proof: Strong Induction. ¹ Base: ext-gcd(x,0) returns ($d = x, 1, 0$) with $x = (1)x + (0)y$. Induction Step: Returns (d, A, B) with $d = Ax + By$ Ind hyp: ext-gcd(y, mod (x, y)) returns (d, a, b) with $d = ay + b(\mod(x, y))$ ext-gcd(x,y) calls ext-gcd(y, mod (x, y)) so $d = ay + b \cdot (\mod(x, y))$ $= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$ $= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y$ And ext-gcd returns ($d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b)$) so theorem holds!
Review Proof: step.	Hand Calculation Method for Inverses.	Wrap-up
Prove: returns (d, A, B) where $d = Ax + By$. ext-gcd (x, y) if $y = 0$ then return $(x, 1, 0)$ else (d, a, b) := ext-gcd(y, mod(x, y)) return $(d, b, a - floor(x/y) * b)$ Recursively: $d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y$ Returns $(d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))$.	Example: $gcd(7, 60) = 1$. gcd(7, 60). 7(0) + 60(1) = 60 $7(1) + 60(0) = 7$ $7(-8) + 60(1) = 4$ $7(9) + 60(-1) = 3$ $7(-17) + 60(2) = 1Confirm: -119 + 120 = 1$	Conclusion: Can find multiplicative inverses in $O(n)$ time! Very different from elementary school: try 1, try 2, try 3 $2^{n/2}$ Inverse of 500,000,357 modulo 1,000,000,000,000? \leq 80 divisions. versus 1,000,000 Internet Security. Public Key Cryptography: 512 digits. 512 divisions vs. (1000000000000000000000000000000000000