Theory: If you drink you must be at least 18.

Which cards do you turn over?

Drink $\implies \geq 18$

$< 18 \implies$ Don’t Drink.
Today: Proofs!!!

1. By Example.
2. Direct. (Prove $P \implies Q$.)
3. by Contraposition (Prove $P \implies Q$)
4. by Contradiction (Prove P.)
5. by Cases

If time: discuss induction.
Integers closed under addition.

\[a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \]

\(a \mid b \) means “a divides b”.

2\mid4? Yes! Since for \(q = 2 \), 4 = (2)2.

7\mid23? No! No \(q \) where true.

4\mid2? No!

Formally: \(a \mid b \iff \exists q \in \mathbb{Z} \) where \(b = aq \).

3\mid15 since for \(q = 5 \), 15 = 3(5).

A natural number \(p > 1 \), is \textbf{prime} if it is divisible only by 1 and itself.
Theorem: For any $a, b, c \in \mathbb{Z}$, if $a|b$ and $a|c$ then $a|(b - c)$.

Proof: Assume $a|b$ and $a|c$

$b = aq$ and $c = aq'$ where $q, q' \in \mathbb{Z}$

$b - c = aq - aq' = a(q - q')$ \[\text{Done?}\]

$(b - c) = a(q - q')$ and $(q - q')$ is an integer so $a|(b - c)$

Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in \mathbb{Z}$.

Direct Proof Form:

Goal: $P \implies Q$

Assume P.

...

Therefore Q. \[\square\]
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then $11|n$.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:
$n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.
$n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.
Assume: Alt. sum: $a - b + c = 11k$ for some integer k.
Add $99a + 11b$ to both sides.
$$100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)$$
Left hand side is n, $k + 9a + b$ is integer. $\implies 11|n$. \square

Direct proof of $P \implies Q$:
Assumed P: $11|a - b + c$. Proved Q: $11|n$.
The Converse

Thm: \(\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n \)

Is converse a theorem?
\(\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n) \)

Yes? No?
Another Direct Proof.

Theorem: \(\forall n \in D_3, (11 | n) \implies (11 | \text{alt. sum of digits of } n) \)

Proof: Assume \(11 | n \).

\[
n = 100a + 10b + c = 11k \implies \\
99a + 11b + (a - b + c) = 11k \implies \\
a - b + c = 11k - 99a - 11b \implies \\
a - b + c = 11(k - 9a - b) \implies \\
a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in \mathbb{Z}
\]

That is \(11 | \text{alternating sum of digits} \). \(\Box \)

Note: similar proof to other. In this case every \(\implies \) is \(\iff \)

Often works with arithmetic properties ...

...not when multiplying by 0.

We have.

Theorem: \(\forall n \in N', (11 | \text{alt. sum of digits of } n) \iff (11 | n) \)
Proof by Contraposition

Thm: For $n \in \mathbb{Z}^+$ and $d | n$. If n is odd then d is odd.

$n = 2k + 1$ what do we know about d?

What to do? Is it even true?

Hey, that rhymes ... and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

... and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: d is even. $d = 2k$.

$d | n$ so we have

$n = qd = q(2k) = 2(kq)$

n is even. $\neg P$
Another Contraposition...

Lemma: For every n in N, n^2 is even $\implies n$ is even. ($P \implies Q$)

n^2 is even, $n^2 = 2k$, ... $\sqrt{2k}$ even?

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$

$P = 'n^2$ is even.' $\neg P = 'n^2$ is odd'

$Q = 'n$ is even' $\neg Q = 'n$ is odd'

Prove $\neg Q \implies \neg P$: n is odd $\implies n^2$ is odd.

$n = 2k + 1$

$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.

$n^2 = 2l + 1$ where l is a natural number..

... and n^2 is odd!

$\neg Q \implies \neg P$ so $P \implies Q$ and ...
Proof by contradiction: form

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: P.

$\neg P \implies P_1 \cdots \implies R$

$\neg P \implies Q_1 \cdots \implies \neg R$

$\neg P \implies R \land \neg R \equiv False$

or $\neg P \implies False$

Contrapositive of $\neg P \implies False$ is True $\implies P$.

Theorem P is proven.
Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in \mathbb{Z}$.

Reduced form: a and b have no common factors.

\[\sqrt{2}b = a \]

\[2b^2 = a^2 = 4k^2 \]

a^2 is even $\implies a$ is even.

$a = 2k$ for some integer k

\[b^2 = 2k^2 \]

b^2 is even $\implies b$ is even.

a and b have a common factor. Contradiction.
Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p ("$p > 1$" = R) which is one of p_i.
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides $x - q$,

$\implies p | x - q \implies p \leq x - q = 1.$

- so $p \leq 1$. (**Contradicts** R.)

The original assumption that “the theorem is false” is false, thus the theorem is proven.
Did we prove?

- “The product of the first k primes plus 1 is prime.”
- No.
- The chain of reasoning started with a false statement.

Consider example..

- $2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime *in between* 13 and $q = 30031$ that divides q.
- Proof assumed no primes *in between* p_k and q.

Product of first k primes..
Proof by cases.

Theorem: \(x^5 - x + 1 = 0 \) has no solution in the rationals.

Proof: First a lemma...

Lemma: If \(x \) is a solution to \(x^5 - x + 1 = 0 \) and \(x = a/b \) for \(a, b \in \mathbb{Z} \), then both \(a \) and \(b \) are even.

Reduced form \(\frac{a}{b} \): \(a \) and \(b \) can’t both be even! + Lemma
\[\implies \text{no rational solution.} \]

Proof of lemma: Assume a solution of the form \(\frac{a}{b} \).

\[\left(\frac{a}{b} \right)^5 - \frac{a}{b} + 1 = 0 \]

Multiply by \(b^5 \),
\[a^5 - ab^4 + b^5 = 0 \]

Case 1: \(a \) odd, \(b \) odd: odd - odd + odd = even. Not possible.
Case 2: \(a \) even, \(b \) odd: even - even + odd = even. Not possible.
Case 3: \(a \) odd, \(b \) even: odd - even + even = even. Not possible.
Case 4: \(a \) even, \(b \) even: even - even + even = even. Possible.

The fourth case is the only one possible, so the lemma follows.
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}\sqrt{2}$ is rational. Done!

Case 2: $\sqrt{2}\sqrt{2}$ is irrational.

- New values: $x = \sqrt{2}\sqrt{2}, y = \sqrt{2}$.

$$x^y = \left(\sqrt{2}\sqrt{2}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}\sqrt{2}} = \sqrt{2^2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don’t know!!!
Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Don’t assume what you want to prove!
Be really careful!

Theorem: $1 = 2$

Proof: For $x = y$, we have

\[
(x^2 - xy) = x^2 - y^2
\]

\[
x(x - y) = (x + y)(x - y)
\]

\[
x = (x + y)
\]

\[
x = 2x
\]

\[
x = \frac{2x}{x} = 2
\]

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

$P \implies Q$ does not mean $Q \implies P$.
Summary: Note 2.

Direct Proof:
To Prove: \(P \implies Q \). Assume \(P \). Prove \(Q \).

By Contraposition:
To Prove: \(P \implies Q \) Assume \(\neg Q \). Prove \(\neg P \).

By Contradiction:
To Prove: \(P \) Assume \(\neg P \). Prove \text{False}.

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
 Either \(\sqrt{2} \) and \(\sqrt{2} \) worked.
 or \(\sqrt{2} \) and \(\sqrt{2}^{\sqrt{2}} \) worked.

Careful when proving!
Don’t assume the theorem. Divide by zero. Watch converse. ...
CS70: Note 3. Induction!

1. The natural numbers.
2. 5 year old Gauss.
3. ..and Induction.
4. Simple Proof.
The natural numbers.
Teacher: Hello class.
Teacher: Please add the numbers from 1 to 100.
Gauss: It’s $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in \mathbb{N}) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

$\forall (n \in \mathbb{N}) : P(n)$.

$P(n)$ is “$\sum_{i=0}^{n} i \frac{(n)(n+1)}{2}$”.

Principle of Induction:

- Prove $P(0)$.
- Assume $P(k)$, “Induction Hypothesis”
- Prove $P(k + 1)$. “Induction Step.”
Gauss induction proof.

Theorem: For all natural numbers \(n \), \(0 + 1 + 2 \cdots n = \frac{n(n+1)}{2} \)

Base Case: Does \(0 = \frac{0(0+1)}{2} \)? Yes.

Induction Step: Show \(\forall k \geq 0, P(k) \implies P(k+1) \)

Induction Hypothesis: \(P(k) = 1 + \cdots + k = \frac{k(k+1)}{2} \)

\[
1 + \cdots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)
\]
\[
= \frac{k^2 + k + 2(k+1)}{2}
\]
\[
= \frac{k^2 + 3k + 2}{2}
\]
\[
= \frac{(k+1)(k+2)}{2}
\]

\(P(k+1) \)!

By principle of induction...
Note’s visualization: an infinite sequence of dominos.

Prove they all fall down;

- \(P(0) = \text{“First domino falls”} \)
- \((\forall k) \ P(k) \iff P(k+1)\):
 “\(k \)th domino falls implies that \(k+1 \)st domino falls”
Climb an infinite ladder?

\[\forall k, P(k) \implies P(k+1) \]

\[P(0) \implies P(1) \implies P(2) \implies P(3) \ldots \]

\[(\forall n \in \mathbb{N}) P(n) \]

Your favorite example of forever..or the natural numbers...
Gauss and Induction

Child Gauss: \((\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})\) Proof?

Idea: assume predicate \(P(n)\) for \(n = k\). \(P(k)\) is \(\sum_{i=1}^{k} i = \frac{k(k+1)}{2}\).

Is predicate, \(P(n)\) true for \(n = k + 1\)?

\[
\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k + 1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.
\]

How about \(k + 2\). Same argument starting at \(k + 1\) works!

Induction Step. \(P(k) \implies P(k + 1)\).

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. \(P(0)\) is \(\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}\) **Base Case.**

Statement is true for \(n = 0\) \(P(0)\) is true

plus inductive step \(\implies\) true for \(n = 1\) \((P(0) \land (P(0) \implies P(1))) \implies P(1)\)

plus inductive step \(\implies\) true for \(n = 2\) \((P(1) \land (P(1) \implies P(2))) \implies P(2)\)

...\(\implies\) true for \(n = k\) \(\implies\) true for \(n = k + 1\) \((P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)\)

...\(\implies\)

Predicate, \(P(n)\), **True** for all natural numbers! **Proof by Induction.**
Induction

The canonical way of proving statements of the form

\[(\forall k \in \mathbb{N})(P(k))\]

▶ For all natural numbers \(n \), \(1 + 2 \cdots n = \frac{n(n+1)}{2} \).
▶ For all \(n \in \mathbb{N} \), \(n^3 - n \) is divisible by 3.
▶ The sum of the first \(n \) odd integers is a perfect square.

The basic form

▶ Prove \(P(0) \). “Base Case”.
▶ \(P(k) \implies P(k+1) \)
 ▶ Assume \(P(k) \), “Induction Hypothesis”
 ▶ Prove \(P(k+1) \). “Induction Step.”

\(P(n) \) true for all natural numbers \(n \)!!!
Get to use \(P(k) \) to prove \(P(k+1) \)!!!
Next Time.

More induction!
See you on Tuesday!