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Modeling Uncertainty: Probability Space‘

. Random Experiment

Probability Space: Q; Pr[w] € [0,1]; X, Pr[w] = 1.
Uniform Probability Space: Pr{w] =1/|Q| for all ® € Q.
Event: “subset of outcomes.” AC Q. Pr[A] =Y ca Prio]

Some calculations.
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= not surprising to have something like n++/xn/2 heads
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Q= {H,T}%; |q| = 2100,

60

80

100

Event E, = ‘nheads’; |E,| = (‘%)

100
pn = PriEs = &l = (o)

Observe:

» Concentration around mean:
Law of Large Numbers;

» Bell-shape: Central Limit
Theorem.
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(b) If events Aq,..., A, are pairwise disjoint,
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Proof:

Obvious. Straightforward. Use definition of probability of events.
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Pr[AUB| = Pr[A] + Pr[B] — Pr[AN B]

A B
PriAl=z+y
PriBl=y+z
PrlANB] =y

PrlAUB]|=z+y+ 2

ANB

Another view. Any € AUBis in ANB, AUB, or AN B. So, add it up.
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Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
Q={HH,HT,TH, TT}; Uniform probability space.
Event A = first flip is heads: A= {HH,HT}.

€} : uniform

New sample space: A; uniform still.

TN

/eHH\

\ enr )

Event B = two heads. S~

\
: A+ uniform

The probability of two heads if the first flip is heads.
The probability of B given Ais 1/2.
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Event A= at least one flip is heads. A= {HH,HT, TH}.

(eTH eHH
€ : uniform

New sample space: A; uniform still.

\

TN
/ @TH @HH
.f \
( | A+ uniform

"\ /
\ eHT /
~_

Event B = two heads.
The probability of two heads if at least one flip is heads.



A similar example.
Two coin flips. At least one of the flips is heads.
— Probability of two heads?
Q={HH,HT,TH, TT}; uniform.
Event A= at least one flip is heads. A= {HH,HT, TH}.

(eTH eHH
‘ € : uniform

New sample space: A; uniform still.

TN
/ @TH @HH
.f \u
( | A+ uniform
\. onrT /

N s

Event B = two heads.

The probability of two heads if at least one flip is heads.
The probability of B given A



A similar example.
Two coin flips. At least one of the flips is heads.
— Probability of two heads?
Q={HH,HT,TH, TT}; uniform.
Event A= at least one flip is heads. A= {HH,HT, TH}.

(eTH eHH
‘ € : uniform

New sample space: A; uniform still.

TN
/ @TH @HH
.f \u
( | A+ uniform
\. onrT /

N s

Event B = two heads.

The probability of two heads if at least one flip is heads.
The probability of B given Ais 1/3.
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Conditional Probability: A non-uniform example

Physical experiment

Pr{w]
3110

4/10
2110
1/10

® Red

® Green
[ ]

® Blue

Probability model

Q = {Red, Green, Yellow, Blue}
3  Pr[Redn(Red or Green)]

Pr[Red|Red or Green] = z=

Pr[Red or Green]
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Yet another non-uniform example

Consider Q = {1,2,...,N} with Pr[n] = pp.
Let A={2,3,4},B={1,2,3}.

D2+ P3 Pri{An B
Pr[A|B] = —
[AlB] P1+ P2+ P3 Pr(B]
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Definition: The conditional probability of B given Ais

priBlA] = PIANE] 'IL’;‘[Q]B]
In Al
In B?

Must be in AN B.

Pr[AnB|
PriBIA] = P2
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What is probability that red is 17?
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What is probability that red is 17?
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More fun with conditional probability.

Toss a red and a blue die, sum is 4,
What is probability that red is 17?

{2 : Uniform

Die 2 B ‘red die is 1
I
i |lei0o 00 0O Q={1,...,6}°
1 1
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PriB|A] = B = §; versus Pr[B] = 1/6.




More fun with conditional probability.

Toss a red and a blue die, sum is 4,
What is probability that red is 17?

{2 : Uniform

Die 2 B = ‘red dieis I’
3
i |lei0o 00 0O Q={1,...,6}°
1 1
S |®0 0000 1=1{(1,3),(2,2),(3,1)}
1 |0 00 0O 1 R/
| e B={(1,1),...,(16)}
i | f®lo 0000 ‘
) | llete.0 0 0 0 .
AERA - - A ‘sum is 4
1 | terc @& 0 00
== Die 1
| 4 k] | 5 (5]

PriB|A] = B = §; versus Pr[B] = 1/6.

B is more likely given A.
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Toss a red and a blue die, sumis 7,
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€1 : Uniform
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Yet more fun with conditional probability.

Toss a red and a blue die, sumis 7,
what is probability that red is 17

€1 : Uniform

Die 2 B ‘red die is 1’

A .
i |1elc 0o 0 00 Q=1{1,...,6}*
RIS A = {(L,6), ..., (6,1))
1 e 000 0 0 o A
IO EEE B=1{(1,1),...,(1,6)}
3 180 0. 000 ‘
2 E.EO o C"‘.:.\*Q__ A =‘sumis 7
1 9.0 0 0 09

== - Die 1

2 3 5 6

Pr[B|A| = B34 = 1 versus Pr(B] = §.

Observing A does not change your mind about the likelihood of B.
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A ="1st bin empty”; B ="2nd bin empty.” What is Pr[A|B]?
00
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Emptiness..

Suppose | toss 3 balls into 3 bins.
A ="1st bin empty”; B ="2nd bin empty.” What is Pr[A|B]?

Q=1{1,2,3}"

eoo 5 5
E NHE e[ ]
BRERBHIEN RS
C(3,2,9) : (1,1,2) : (3,2,2)
w = (bin of red ball, bin of blue ball, )

Pr|B] = Pr[{(a,b,c) | a,b,c {1,3}] = Pr[{1,3}%] = &
Pr[AnB] = Pr((3,3,3)] = 2%
PriA|B] = PHR = (520 = 1/8; vs. PriA] = §,.

A s less likely given B:
Second bin is empty = first bin is more likely to contain ball(s).
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Gambler’s fallacy.

Flip a fair coin 51 times.

A = “first 50 flips are heads
B = “the 51st is heads”
Pr[B|A] ?

A= {HH---HT,HH--- HH}
BNA={HH---HH}

Uniform probability space.
PriBIA] = B8 = 1.
Same as Pr[B].

The likelihood of 51st heads does not depend on the previous flips.
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Recall the definition of conditional probability:

_ Pr[AnB]
Hence,
Pr[An B] = Pr[A]Pr[B|A].
Consequently,

PrIANBNC] = Pr[(AnB)NC]
PrlAn B]Pr[C|AN B]
= PrlA|Pr[B|APr[C|ANB].
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Product Rule

Theorem Product Rule
Let A{,As,..., A, be events. Then

Pf[A1 ﬂ“'ﬂAn] = PI’[A1]PF[A2|A1]~~~PI’[An‘A1 ﬁ~~'ﬂAn,1].

Proof: By induction.
Assume the result is true for n. (It holds for n=2.) Then,

= Pr[A1N---NAjPr{Ans1|A1N---NAJ]
= Pr[A1]Pr[A2|A1]~~~Pr[A,,|A1 ﬁ~~~mA,,,1]Pr[A,,+1 |A1 ﬂ~~ﬂAn],

Thus, the result holds for n+1. [
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Event A: the person has lung cancer.
Event B: the person is a heavy smoker.

Pr[A|B] =1.17 x Pr[A].

A second look.

Note that
B PrlAnB]
PrlAIB] =117 x Pr[A] < W_LﬂxPr[A]
< Pr[AnB] =1.17 x Pr[A]|Pr|[B]
PrlAnB]
© ThA - 1.17 x Pr(B).
<  Pr[B|A|=1.17 x Pr[B].

Conclusion:

» Lung cancer increases the probability of smoking by 17%.

» Lung cancer causes smoking. Really?
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Causality vs. Correlation

Events A and B are positively correlated if
Pr[An B] > Pr[A]|Pr[B].
(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or
that B causes A.

Other examples:

» Tesla owners are more likely to be rich. That does not mean that
poor people should buy a Tesla to get rich.

» People who go to the opera are more likely to have a good
career. That does not mean that going to the opera will improve
your career.

» Rabbits eat more carrots and do not wear glasses. Are carrots
good for eyesight?
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Proving Causality

Proving causality is generally difficult. One has to eliminate external
causes of correlation and be able to test the cause/effect relationship
(e.g., randomized clinical trials).

Some difficulties:
» Aand B may be positively correlated because they have a
common cause. (E.g., being a rabbit.)

» If B precedes A, then B is more likely to be the cause. (E.g.,
smoking.) However, they could have a common cause that
induces B before A. (E.g., studious, CS70, Tesla.)

More about such questions later. For fun, check “N. Taleb: Fooled by
randomness.”
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Total probability

Assume that  is the union of the disjoint sets Aq,...,An.

Q

Then,
Pr[B] = Pr[A1nB]+---+ Pr[AyN BJ.

Indeed, B is the union of the disjoint sets A,NBforn=1,...,N. Thus,

Pr[B] = Pr[A{]Pr[B|A{] + - -+ Pr[An] Pr[B|An]-



Total probability

Assume that Q is the union of the disjoint sets A4, ..., An.

Prior 1 Conditional
probabilities 1 probabilities
__,_9__-. —’4‘71 —_ B
PriA, : /
[ ] Ax Pr[BH“]
Partition
of Q

Pr(B] = PriA]Pr[B|Ai]+--- + Pr[An] Pr{B|An].
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Is you coin loaded?
Your coin is fair (Pr[H] = 0.5) w/prob 1/2 or 'unfair’ (Pr[H] =
otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:
A= ‘coin is fair', B= ‘outcome is heads’

We want to calculate P[A|B].
We know P[B|A] = 1/2,P[B|A] = 0.6, Pr[A] = 1/2 = Pr[A]

Now,
Pr[B] = Pr[AnB]+ Pr[AnB]= Pr[A|Pr[B|A] + Pr[A|Pr[B|A]
(1/2)(1/2)+(1/2)0.6 = 0.55.
Thus,
priag) = PAPIBAL (1/2)(1/2) ~ 0.45.

Pr[B] - (1/2)(1/2)+(1/2)0.6



Is you coin loaded?
A picture:



Is you coin loaded?

A picture: fair coin
A
1/2 1/2
O B heads
1/2 0.6
A

loaded coin



Is you coin loaded?

A picture: fair coin
A
1/2 1/2
O B heads
1/2 0.6
A

loaded coin

Imagine 100 situations, among which
m:=100(1/2)(1/2) are such that A and B occur and
n:=100(1/2)(0.6) are such that A and B occur.



Is you coin loaded?

A picture: fair coin
A
1/2 1/2
O B heads
1/2 0.6
A

loaded coin

Imagine 100 situations, among which

m:=100(1/2)(1/2) are such that A and B occur and
n:=100(1/2)(0.6) are such that A and B occur.

Thus, among the m+ n situations where B occurred, there are m
where A occurred.



Is you coin loaded?

A picture: fair coin
A
1/2 1/2
O B heads
1/2 0.6
A

loaded coin

Imagine 100 situations, among which
m:=100(1/2)(1/2) are such that A and B occur and
n:=100(1/2)(0.6) are such that A and B occur.

Thus, among the m+ n situations where B occurred, there are m
where A occurred.

Hence,

Al = = T2 /2 + (/206"
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Fact: Two events A and B are independent if and only if

Pr[A|B] = Pr[A].

Indeed: Pr[A|B] = ng}gf], so that

PriAN B

PrIAIB) = PriA] & —g

= Pr[A]l < Pr[An B] = Pr[A]Pr|[B].
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Another picture: We imagine that there are N possible causes
Aq,..., AN

pn = Pr[A,)
- g In= Pr[B|A,]

CA Ay, ..., Ay disjoint

An _“-‘l]U"'U_“-‘lg\; =0

Pn

PN

Imagine 100 situations, among which 100p,q, are such that A, and
Boccur, forn=1,... N.
Thus, among the 100Y.,,, pmgm situations where B occurred, there are
100p,qn where A, occurred.
Hence,

PnQn

Pr[An|B] = S oG
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Why do you have a fever?

Prior Conditional

probabilities probabilities
0.80
Flu \

s SRR 32

Ebola High Fever
/l.l()
Other

Using Bayes’ rule, we find

0.15 % 0.80
Pr[Flu|High Fever] — ~0.
r[FlulHigh Fever] = 65 080110 8x 1108501 ~ 00
Pr[Ebola|High Fever] — 1078 x1 ~5x1078
g T 0.15x080+10 8x14085x01
Pr[Other|High Fever] = 0.85>0.1 0.42

015x0.80110 8x1+085x01

These are the posterior probabilities. One says that ‘Flu’ is the Most Likely a
Posteriori (MAP) cause of the high fever.
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Bayes’ Rule Operations

[Environment]
Priors:
Pr[A,]

Observe B

Posteriors:

Bayes’ Rule Pr[A,|B]

Clonditional:
Pr|B|A,]
[Model of system]

Bayes’ Rule is the canonical example of how information changes our
opinions.



Thomas Bayes

Source: Wikipedia.

Thomas Bayes

Mo earlier portrait or claimed portrait survives.

Born c. 1701
Londen, England
Died 7 April 1761 (aged 59)

Tunbridge Wells, Kent, England
Residence Tunbridge Wells, Kent, England
Nationality English

Known for Bayes' theorem




Thomas Bayes

FiG. 3. Joshua Bayes (1671-1746). Thomas Bayes?

A Bayesian picture of Thomas Bayes.
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Testing for disease.

Let’'s watch TV!I

Random Experiment: Pick a random male.
Outcomes: (test,disease)

A - prostate cancer.

B - positive PSA test.

> Pr[A] =0.0016, (.16 % of the male population is affected.)
> Pr[B|A] = 0.80 (80% chance of positive test with disease.)
» Pr[B|A] =0.10 (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and
http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do | have disease?

Pr{A|B|???
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Using Bayes’ rule, we find

0.0016 x 0.80 o1

PIAIB] = 0.0016 x 0.80+0.9984 x 0.10

A 1.3% chance of prostate cancer with a positive PSA test.
Surgery anyone?

Impotence...

Incontinence..

Death.
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Summary

‘ Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:
» Conditional Probability:
PrlA1B] = ZHa5P
> Independence: Pr[AN B] = Pr[A]Pr[B].

» Bayes’ Rule:

Pr{An]Pr[B|A,]
Lm Pr{Am] Pr[B|Am]

Pr[An|B] =

Pr[An|B] = posterior probability; Pr[A,] = prior probability .

» All these are possible:
Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].



