First Rule of counting:

First Rule of counting: Objects from a sequence of choices:

First Rule of counting: Objects from a sequence of choices: n_i possibilitities for *i*th choice.

First Rule of counting: Objects from a sequence of choices: n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

First Rule of counting: Objects from a sequence of choices: n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting:

First Rule of counting: Objects from a sequence of choices: n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

First Rule of counting: Objects from a sequence of choices: n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order.

First Rule of counting: Objects from a sequence of choices: n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object.

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars:

First Rule of counting: Objects from a sequence of choices: n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n. Order doesn't matter.

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample *k* objects with replacement from *n*. Order doesn't matter. *k* stars n-1 bars. Typically: $\binom{n+k-1}{k}$

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.

Order doesn't matter. k stars n-1 bars. Typically: $\binom{n+k-1}{k}$ or $\binom{n+k-1}{n-1}$.

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.

Order doesn't matter. k stars n-1 bars. Typically: $\binom{n+k-1}{k}$ or $\binom{n+k-1}{n-1}$.

Inclusion/Exclusion: two sets of objects.

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.

Order doesn't matter. k stars n-1 bars. Typically: $\binom{n+k-1}{k}$ or $\binom{n+k-1}{n-1}$.

Inclusion/Exclusion: two sets of objects.

Add number of each

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample *k* objects with replacement from *n*.

Order doesn't matter. k stars n-1 bars. Typically: $\binom{n+k-1}{k}$ or $\binom{n+k-1}{n-1}$.

Inclusion/Exclusion: two sets of objects.

Add number of each and then subtract intersection of sets.

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.

Order doesn't matter. k stars n-1 bars. Typically: $\binom{n+k-1}{k}$ or $\binom{n+k-1}{n-1}$.

Inclusion/Exclusion: two sets of objects.

Add number of each and then subtract intersection of sets. Sum Rule: If disjoint just add.

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.

Order doesn't matter. k stars n-1 bars. Typically: $\binom{n+k-1}{k}$ or $\binom{n+k-1}{n-1}$.

Inclusion/Exclusion: two sets of objects.

Add number of each and then subtract intersection of sets. Sum Rule: If disjoint just add.

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample *k* objects with replacement from *n*.

Order doesn't matter. k stars n-1 bars. Typically: $\binom{n+k-1}{k}$ or $\binom{n+k-1}{n-1}$.

Inclusion/Exclusion: two sets of objects.

Add number of each and then subtract intersection of sets. Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways.

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample *k* objects with replacement from *n*.

Order doesn't matter. k stars n-1 bars. Typically: $\binom{n+k-1}{k}$ or $\binom{n+k-1}{n-1}$.

Inclusion/Exclusion: two sets of objects.

Add number of each and then subtract intersection of sets. Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways. Pascal's Triangle Example: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$.

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample *k* objects with replacement from *n*.

Order doesn't matter. k stars n-1 bars. Typically: $\binom{n+k-1}{k}$ or $\binom{n+k-1}{n-1}$.

Inclusion/Exclusion: two sets of objects.

Add number of each and then subtract intersection of sets. Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways. Pascal's Triangle Example: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$. RHS: Number of subsets of n+1 items size k.

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.

Order doesn't matter. k stars n-1 bars. Typically: $\binom{n+k-1}{k}$ or $\binom{n+k-1}{n-1}$.

Inclusion/Exclusion: two sets of objects.

Add number of each and then subtract intersection of sets. Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways. Pascal's Triangle Example: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$. RHS: Number of subsets of n+1 items size k. LHS: $\binom{n}{k-1}$ counts subsets of n+1 items with first item.

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.

Order doesn't matter. k stars n-1 bars. Typically: $\binom{n+k-1}{k}$ or $\binom{n+k-1}{n-1}$.

Inclusion/Exclusion: two sets of objects.

Add number of each and then subtract intersection of sets. Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways. Pascal's Triangle Example: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$. RHS: Number of subsets of n+1 items size k. LHS: $\binom{n}{k-1}$ counts subsets of n+1 items with first item. $\binom{n}{k}$ counts subsets of n+1 items without first item.

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.

Order doesn't matter. k stars n-1 bars. Typically: $\binom{n+k-1}{k}$ or $\binom{n+k-1}{n-1}$.

Inclusion/Exclusion: two sets of objects.

Add number of each and then subtract intersection of sets. Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways. Pascal's Triangle Example: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$. RHS: Number of subsets of n+1 items size k.

LHS: $\binom{n}{k-1}$ counts subsets of n+1 items with first item. $\binom{n}{k}$ counts subsets of n+1 items without first item.

Disjoint

First Rule of counting: Objects from a sequence of choices:

n_i possibilitities for *i*th choice.

 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.

Order doesn't matter. *k* stars n-1 bars. Typically: $\binom{n+k-1}{k}$ or $\binom{n+k-1}{n-1}$.

Inclusion/Exclusion: two sets of objects.

Add number of each and then subtract intersection of sets. Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways. Pascal's Triangle Example: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$. RHS: Number of subsets of n+1 items size k. LHS: $\binom{n}{k-1}$ counts subsets of n+1 items with first item. $\binom{n}{k}$ counts subsets of n+1 items without first item. Disjoint – so add!

CS70: On to probability.

Modeling Uncertainty: Probability Space

CS70: On to probability.

Modeling Uncertainty: Probability Space

- 1. Key Points
- 2. Random Experiments
- 3. Probability Space

Uncertainty does not mean "nothing is known"

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance
 - Design randomized algorithms.

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance
 - Design randomized algorithms.
- Probability

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance
 - Design randomized algorithms.
- Probability
 - Models knowledge about uncertainty

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance
 - Design randomized algorithms.
- Probability
 - Models knowledge about uncertainty
 - Optimizes use of knowledge to make decisions

Uncertainty:

Uncertainty: vague,

Uncertainty: vague, fuzzy,

Uncertainty: vague, fuzzy, confusing,

Uncertainty: vague, fuzzy, confusing, scary,

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability:

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise,

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous,

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple(!)

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Uncertainty = Fear

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Uncertainty = Fear

Probability = Serenity

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Probability = Serenity

Our mission: help you discover the serenity of Probability,

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Uncertainty = Fear

Probability = Serenity

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Uncertainty = Fear

Probability = Serenity

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost:

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Uncertainty = Fear

Probability = Serenity

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Uncertainty = Fear

Probability = Serenity

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.

Flip a fair coin:

Flip a fair coin: (One flips or tosses a coin)

Flip a fair coin: (One flips or tosses a coin)

Flip a fair coin: (One flips or tosses a coin)

Possible outcomes:

Flip a fair coin: (One flips or tosses a coin)

Possible outcomes: Heads (H)

Flip a fair coin: (One flips or tosses a coin)

Possible outcomes: Heads (H) and Tails (T)

Flip a fair coin: (One flips or tosses a coin)

Possible outcomes: Heads (H) and Tails (T) (One flip yields either 'heads' or 'tails'.)

Flip a fair coin: (One flips or tosses a coin)

- Possible outcomes: Heads (H) and Tails (T) (One flip yields either 'heads' or 'tails'.)
- Likelihoods:

Flip a fair coin: (One flips or tosses a coin)

- Possible outcomes: Heads (H) and Tails (T) (One flip yields either 'heads' or 'tails'.)
- Likelihoods: *H* : 50% and *T* : 50%

Random Experiment: Flip one Fair Coin Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Random Experiment: Flip one Fair Coin Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

Single coin flip: 50% chance of 'tails'

What do we mean by the likelihood of tails is 50%?

Two interpretations:

Single coin flip: 50% chance of 'tails' [subjectivist]

What do we mean by the likelihood of tails is 50%? Two interpretations:

Single coin flip: 50% chance of 'tails' [subjectivist]
 Willingness to bet on the outcome of a single flip

What do we mean by the likelihood of tails is 50%?

- Single coin flip: 50% chance of 'tails' [subjectivist]
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails'

What do we mean by the likelihood of tails is 50%? Two interpretations:

- Single coin flip: 50% chance of 'tails' [subjectivist]
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' [frequentist]

What do we mean by the likelihood of tails is 50%? Two interpretations:

- Single coin flip: 50% chance of 'tails' [subjectivist]
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' [frequentist]
 Makes sense for many flips

What do we mean by the likelihood of tails is 50%?

- Single coin flip: 50% chance of 'tails' [subjectivist]
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' [frequentist]
 Makes sense for many flips
- Question:

What do we mean by the likelihood of tails is 50%?

- Single coin flip: 50% chance of 'tails' [subjectivist]
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' [frequentist]
 Makes sense for many flips
- Question: Why does the fraction of tails converge to the same value every time?

What do we mean by the likelihood of tails is 50%?

- Single coin flip: 50% chance of 'tails' [subjectivist]
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' [frequentist]
 Makes sense for many flips
- Question: Why does the fraction of tails converge to the same value every time? Statistical Regularity!

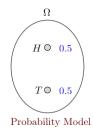
What do we mean by the likelihood of tails is 50%?

- Single coin flip: 50% chance of 'tails' [subjectivist]
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' [frequentist]
 Makes sense for many flips
- Question: Why does the fraction of tails converge to the same value every time? Statistical Regularity! Deep!

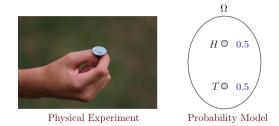
Flip a fair coin:

Flip a fair coin: model

Physical Experiment

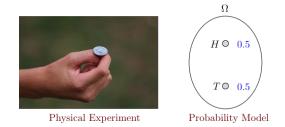


Flip a fair coin: model

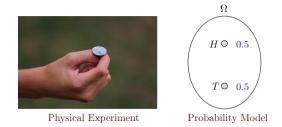


The physical experiment is complex.

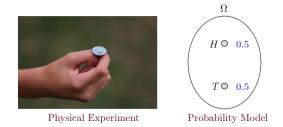
Flip a fair coin: model



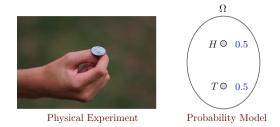
 The physical experiment is complex. (Shape, density, initial momentum and position, ...)



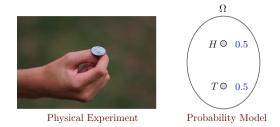
- The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:



- The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:
 - A set Ω of outcomes: $\Omega = \{H, T\}$.



- The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:
 - A set Ω of outcomes: $\Omega = \{H, T\}$.
 - A probability assigned to each outcome:



- The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:
 - A set Ω of outcomes: $\Omega = \{H, T\}$.
 - A probability assigned to each outcome: Pr[H] = 0.5, Pr[T] = 0.5.

H: 45% T: 55%

Flip an unfair (biased, loaded) coin:

Possible outcomes:

Flip an unfair (biased, loaded) coin:

Possible outcomes: Heads (H) and Tails (T)

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H: p \in (0,1)$ and T: 1-p

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H : p \in (0, 1)$ and T : 1 p
- Frequentist Interpretation:

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H: p \in (0,1)$ and T: 1-p
- Frequentist Interpretation:

Flip many times \Rightarrow Fraction 1 – *p* of tails

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H: p \in (0,1)$ and T: 1-p
- Frequentist Interpretation:

Flip many times \Rightarrow Fraction 1 – *p* of tails

Question:

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H: p \in (0,1)$ and T: 1-p
- Frequentist Interpretation:

Flip many times \Rightarrow Fraction 1 – *p* of tails

Question: How can one figure out p?

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H: p \in (0,1)$ and T: 1-p
- Frequentist Interpretation:

Flip many times \Rightarrow Fraction 1 – *p* of tails

Question: How can one figure out p? Flip many times

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H: p \in (0,1)$ and T: 1-p
- Frequentist Interpretation:

Flip many times \Rightarrow Fraction 1 – *p* of tails

- Question: How can one figure out p? Flip many times
- Tautology?

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H: p \in (0,1)$ and T: 1-p
- Frequentist Interpretation:

Flip many times \Rightarrow Fraction 1 – p of tails

- Question: How can one figure out p? Flip many times
- Tautology? No: Statistical regularity!

Flip an unfair (biased, loaded) coin: model

Physical Experiment

Probability Model

Possible outcomes:

Possible outcomes: {HH, HT, TH, TT}

▶ Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.

- ▶ Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- Note: A × B := {(a, b) | a ∈ A, b ∈ B}

- Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- ▶ Note: $A \times B := \{(a, b) \mid a \in A, b \in B\}$ and $A^2 := A \times A$.

- Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- ▶ Note: $A \times B := \{(a, b) \mid a \in A, b \in B\}$ and $A^2 := A \times A$.
- Likelihoods:

- Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- ▶ Note: $A \times B := \{(a, b) \mid a \in A, b \in B\}$ and $A^2 := A \times A$.
- Likelihoods: 1/4 each.

- ▶ Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- ▶ Note: $A \times B := \{(a, b) \mid a \in A, b \in B\}$ and $A^2 := A \times A$.
- Likelihoods: 1/4 each.

Flips two coins glued together side by side:

50%

Possible outcomes:

Flips two coins glued together side by side:

50%

▶ Possible outcomes: {*HT*, *TH*}.

50%

- Possible outcomes: {HT, TH}.
- Likelihoods:

50%

- Possible outcomes: {HT, TH}.
- Likelihoods: *HT* : 0.5, *TH* : 0.5.

50%

- Possible outcomes: {HT, TH}.
- Likelihoods: *HT* : 0.5, *TH* : 0.5.
- Note: Coins are glued so that they show different faces.

Flips two coins attached by a spring:

Possible outcomes:

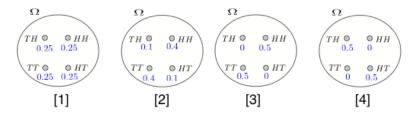
Flips two coins attached by a spring:

▶ Possible outcomes: {*HH*, *HT*, *TH*, *TT*}.

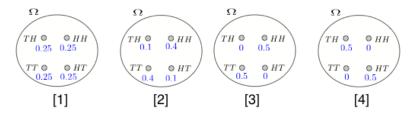
- ▶ Possible outcomes: {*HH*, *HT*, *TH*, *TT*}.
- Likelihoods:

- ▶ Possible outcomes: {*HH*, *HT*, *TH*, *TT*}.
- Likelihoods: *HH* : 0.4, *HT* : 0.1, *TH* : 0.1, *TT* : 0.4.

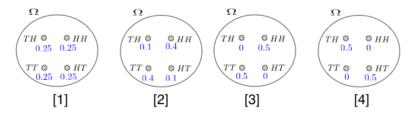
- ▶ Possible outcomes: {*HH*, *HT*, *TH*, *TT*}.
- Likelihoods: *HH* : 0.4, *HT* : 0.1, *TH* : 0.1, *TT* : 0.4.
- Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.



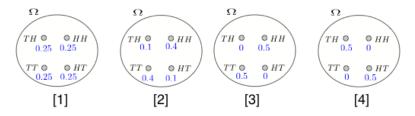
Here is a way to summarize the four random experiments:



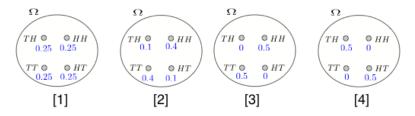
Ω is the set of *possible* outcomes;



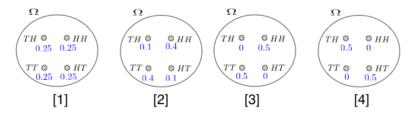
- Ω is the set of *possible* outcomes;
- Each outcome has a probability (likelihood);



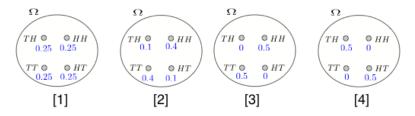
- Ω is the set of *possible* outcomes;
- Each outcome has a probability (likelihood);
- ► The probabilities are ≥ 0 and add up to 1;



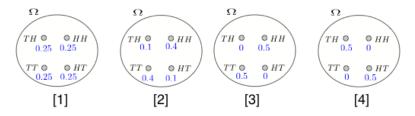
- Ω is the set of *possible* outcomes;
- Each outcome has a probability (likelihood);
- ► The probabilities are ≥ 0 and add up to 1;
- Fair coins:



- Ω is the set of *possible* outcomes;
- Each outcome has a probability (likelihood);
- ► The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1];

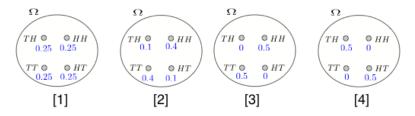


- Ω is the set of *possible* outcomes;
- Each outcome has a probability (likelihood);
- ► The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1]; Glued coins:



- Ω is the set of *possible* outcomes;
- Each outcome has a probability (likelihood);
- ► The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1]; Glued coins: [3], [4];

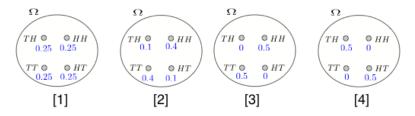
Here is a way to summarize the four random experiments:



- Ω is the set of *possible* outcomes;
- Each outcome has a probability (likelihood);
- ► The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1]; Glued coins: [3], [4];

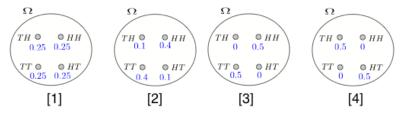
Spring-attached coins:

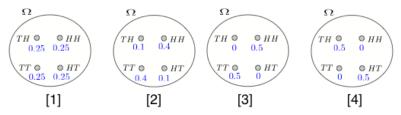
Here is a way to summarize the four random experiments:

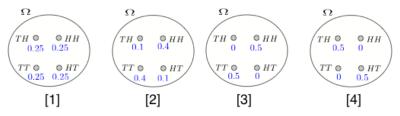


- Ω is the set of *possible* outcomes;
- Each outcome has a probability (likelihood);
- ► The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1]; Glued coins: [3], [4];
 Spring-attached coins: [2];

Flipping Two Coins

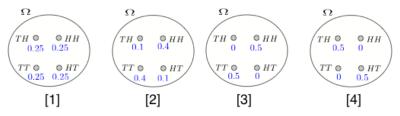




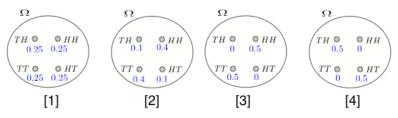


Important remarks:

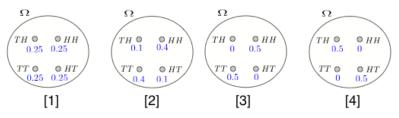
Each outcome describes the two coins.



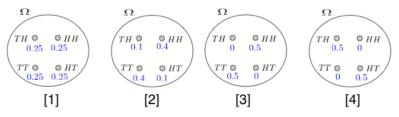
- Each outcome describes the two coins.
- E.g., HT is one outcome of each of the above experiments.



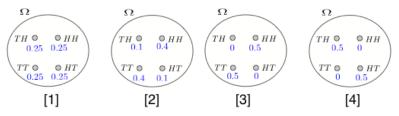
- Each outcome describes the two coins.
- E.g., *HT* is one outcome of each of the above experiments.
- It is wrong to think that the outcomes are {H, T} and that one picks twice from that set.



- Each outcome describes the two coins.
- E.g., *HT* is one outcome of each of the above experiments.
- It is wrong to think that the outcomes are {H, T} and that one picks twice from that set.
- Indeed, this viewpoint misses the relationship between the two flips.



- Each outcome describes the two coins.
- E.g., *HT* is one outcome of each of the above experiments.
- It is wrong to think that the outcomes are {H, T} and that one picks twice from that set.
- Indeed, this viewpoint misses the relationship between the two flips.
- Each $\omega \in \Omega$ describes one outcome of the complete experiment.



- Each outcome describes the two coins.
- E.g., *HT* is one outcome of each of the above experiments.
- It is wrong to think that the outcomes are {H, T} and that one picks twice from that set.
- Indeed, this viewpoint misses the relationship between the two flips.
- ► Each $\omega \in \Omega$ describes one outcome of the complete experiment.
- Ω and the probabilities specify the random experiment.

Flipping *n* times

Flip a fair coin *n* times (some $n \ge 1$):

Possible outcomes:

Flipping *n* times

Flip a fair coin *n* times (some $n \ge 1$):

▶ Possible outcomes: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}$.

▶ Possible outcomes: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}$.

Thus, 2ⁿ possible outcomes.

Possible outcomes: {*TT*···*T*, *TT*···*H*,..., *HH*···*H*}. Thus, 2ⁿ possible outcomes.

▶ Note:
$$\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$$
.

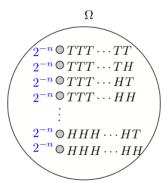
- Possible outcomes: {*TT*···*T*, *TT*···*H*,..., *HH*···*H*}. Thus, 2ⁿ possible outcomes.
- ► Note: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$. $A^n := \{(a_1, \dots, a_n) \mid a_1 \in A, \dots, a_n \in A\}.$

- Possible outcomes: {*TT* ··· *T*, *TT* ··· *H*, ..., *HH* ··· *H*}. Thus, 2ⁿ possible outcomes.
- ► Note: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$. $A^n := \{(a_1, \dots, a_n) \mid a_1 \in A, \dots, a_n \in A\}$. $|A^n| = |A|^n$.

- Possible outcomes: {*TT*···*T*, *TT*···*H*,..., *HH*···*H*}. Thus, 2ⁿ possible outcomes.
- ► Note: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$. $A^n := \{(a_1, \dots, a_n) \mid a_1 \in A, \dots, a_n \in A\}$. $|A^n| = |A|^n$.
- Likelihoods:

- Possible outcomes: {*TT*···*T*, *TT*···*H*,..., *HH*···*H*}. Thus, 2ⁿ possible outcomes.
- ► Note: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$. $A^n := \{(a_1, \dots, a_n) \mid a_1 \in A, \dots, a_n \in A\}$. $|A^n| = |A|^n$.
- ▶ Likelihoods: 1/2ⁿ each.

- Possible outcomes: {*TT*···*T*, *TT*···*H*,..., *HH*···*H*}.
 Thus, 2ⁿ possible outcomes.
- ► Note: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$. $A^n := \{(a_1, \dots, a_n) \mid a_1 \in A, \dots, a_n \in A\}$. $|A^n| = |A|^n$.
- ▶ Likelihoods: 1/2ⁿ each.



Roll a balanced 6-sided die twice:

Possible outcomes:

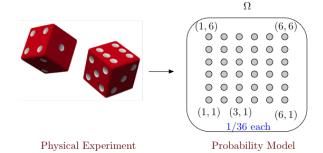
Roll a balanced 6-sided die twice:

• Possible outcomes: $\{1, 2, 3, 4, 5, 6\}^2 = \{(a, b) \mid 1 \le a, b \le 6\}.$

- Possible outcomes: $\{1, 2, 3, 4, 5, 6\}^2 = \{(a, b) \mid 1 \le a, b \le 6\}.$
- Likelihoods:

- Possible outcomes: $\{1, 2, 3, 4, 5, 6\}^2 = \{(a, b) \mid 1 \le a, b \le 6\}$.
- Likelihoods: 1/36 for each.

- Possible outcomes: $\{1, 2, 3, 4, 5, 6\}^2 = \{(a, b) \mid 1 \le a, b \le 6\}.$
- Likelihoods: 1/36 for each.



1. A "random experiment":

A "random experiment":
 (a) Flip a biased coin;

1. A "random experiment":

(a) Flip a biased coin;(b) Flip two fair coins;

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.

- 1. A "random experiment":
 - (a) Flip a biased coin;(b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .

- 1. A "random experiment":
 - (a) Flip a biased coin;(b) Flip two fair coins;(c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .

(a) $\Omega = \{H, T\};$

- 1. A "random experiment":
 - (a) Flip a biased coin;(b) Flip two fair coins;(c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .

(a)
$$\Omega = \{H, T\};$$

(b) $\Omega = \{HH, HT, TH, TT\};$

- 1. A "random experiment":
 - (a) Flip a biased coin;(b) Flip two fair coins;(c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .

(a)
$$\Omega = \{H, T\};$$

(b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| =$

- 1. A "random experiment":
 - (a) Flip a biased coin;(b) Flip two fair coins;(c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .

(a)
$$\Omega = \{H, T\};$$

(b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4;$

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .

(a)
$$\Omega = \{H, T\};$$

(b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4;$
(c) $\Omega = \{\underline{A \blacklozenge A \diamondsuit A \clubsuit A \bigtriangledown K \blacklozenge}, \underline{A \blacklozenge A \diamondsuit A \clubsuit A \bigtriangledown Q \blacklozenge}, \ldots\}$
 $|\Omega| =$

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .

3. Assign a probability to each outcome: $Pr: \Omega \rightarrow [0, 1]$.

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .

3. Assign a probability to each outcome: $Pr: \Omega \rightarrow [0, 1]$.

(a)
$$Pr[H] = p, Pr[T] = 1 - p$$
 for some $p \in [0, 1]$

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .

3. Assign a probability to each outcome: $Pr : \Omega \rightarrow [0, 1]$.

(a)
$$Pr[H] = p, Pr[T] = 1 - p$$
 for some $p \in [0, 1]$
(b) $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .

3. Assign a probability to each outcome: $Pr : \Omega \rightarrow [0, 1]$.

(a)
$$Pr[H] = p$$
, $Pr[T] = 1 - p$ for some $p \in [0, 1]$
(b) $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$
(c) $Pr[\underline{A \triangleq A \diamondsuit A \clubsuit A \heartsuit K \triangleq}] = \cdots = 1/\binom{52}{5}$

 Ω is the **sample space**.

Ω is the sample space. $ω \in Ω$ is a sample point.

 Ω is the sample space.

 $\omega \in \Omega$ is a sample point. (Also called an outcome.)

 Ω is the **sample space**.

 $ω \in Ω$ is a **sample point**. (Also called an **outcome**.) Sample point ω has a probability Pr[ω] where

 Ω is the **sample space**.

 $ω \in Ω$ is a **sample point**. (Also called an **outcome**.) Sample point ω has a probability Pr[ω] where

• $0 \leq Pr[\omega] \leq 1;$

 Ω is the **sample space**.

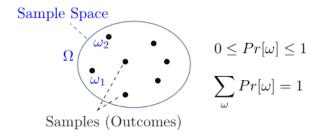
 $\omega \in \Omega$ is a **sample point**. (Also called an **outcome**.) Sample point ω has a probability $Pr[\omega]$ where

- $0 \leq Pr[\omega] \leq 1;$
- $\blacktriangleright \sum_{\omega \in \Omega} \Pr[\omega] = 1.$

 Ω is the sample space.

 $\omega \in \Omega$ is a **sample point**. (Also called an **outcome**.) Sample point ω has a probability $Pr[\omega]$ where

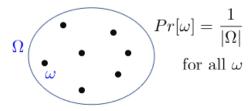
- $0 \leq Pr[\omega] \leq 1;$
- $\blacktriangleright \sum_{\omega \in \Omega} \Pr[\omega] = 1.$



In a **uniform probability space** each outcome ω is equally probable: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

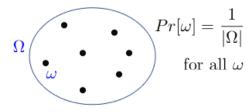
In a **uniform probability space** each outcome ω is equally probable: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

Uniform Probability Space



In a **uniform probability space** each outcome ω is equally probable: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

Uniform Probability Space

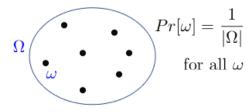


Examples:

 Flipping two fair coins, dealing a poker hand are uniform probability spaces.

In a **uniform probability space** each outcome ω is equally probable: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

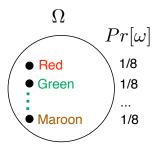
Uniform Probability Space



Examples:

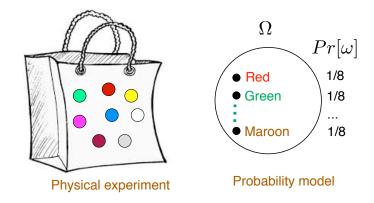
- Flipping two fair coins, dealing a poker hand are uniform probability spaces.
- Flipping a biased coin is not a uniform probability space.

Physical experiment



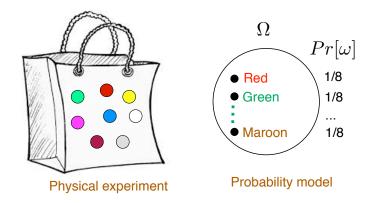
Probability model

Simplest physical model of a uniform probability space:



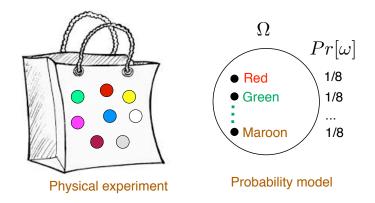
A bag of identical balls, except for their color (or a label).

Simplest physical model of a uniform probability space:



A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

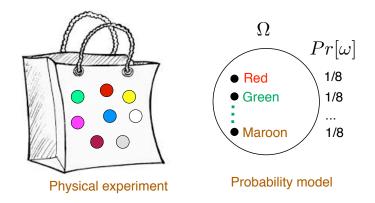
Simplest physical model of a uniform probability space:



A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

 $\Omega = \{$ white, red, yellow, grey, purple, blue, maroon, green $\}$

Simplest physical model of a uniform probability space:

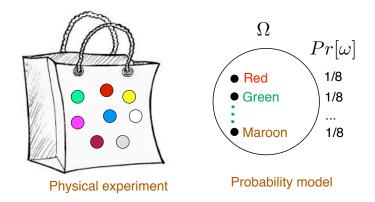


A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

 $\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \}$

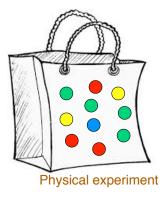
Pr[blue] =

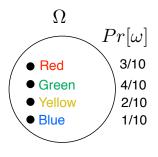
Simplest physical model of a uniform probability space:



A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

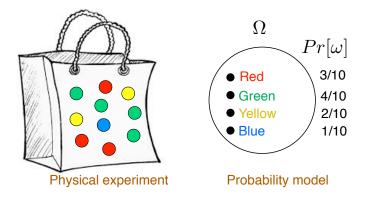
 $\Omega = \{$ white, red, yellow, grey, purple, blue, maroon, green $\}$ Pr[blue $] = \frac{1}{8}.$





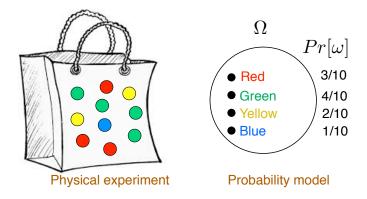
Probability model

Simplest physical model of a non-uniform probability space:

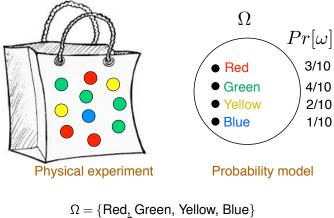


 $\Omega = \{ \text{Red, Green, Yellow, Blue} \}$

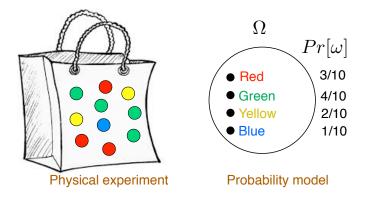
Simplest physical model of a non-uniform probability space:



 $\Omega = \{ \text{Red, Green, Yellow, Blue} \}$ Pr[Red] =

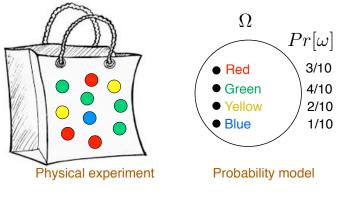


$$\Omega = \{ \text{Red, Green, Yellow, Blue} \\ Pr[\text{Red}] = \frac{3}{10},$$



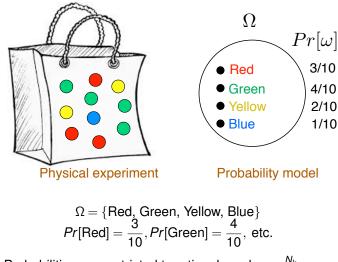
$$\Omega = \{\text{Red}, \text{Green}, \text{Yellow}, \text{Blue}\}$$

 $Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] =$



$$\Omega = \{\text{Red, Green, Yellow, Blue}\}$$
$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$

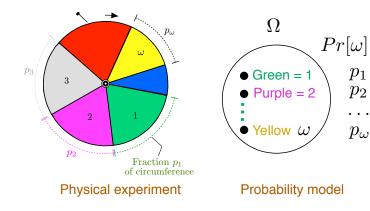
Simplest physical model of a non-uniform probability space:



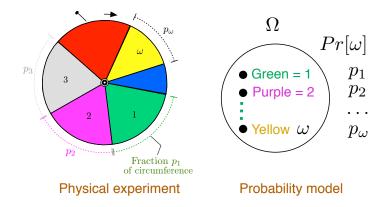
Note: Probabilities are restricted to rational numbers: $\frac{N_k}{N}$.

Physical model of a general non-uniform probability space:

Physical model of a general non-uniform probability space:

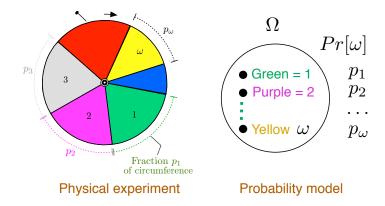


Physical model of a general non-uniform probability space:



The roulette wheel stops in sector ω with probability p_{ω} .

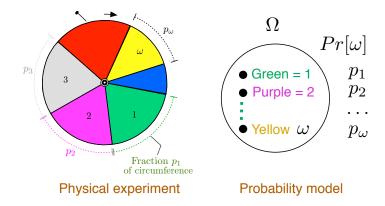
Physical model of a general non-uniform probability space:



The roulette wheel stops in sector ω with probability p_{ω} .

$$\Omega = \{1, 2, 3, \ldots, N\},\$$

Physical model of a general non-uniform probability space:



The roulette wheel stops in sector ω with probability p_{ω} .

$$\Omega = \{1, 2, 3, \dots, N\}, \Pr[\omega] = \rho_{\omega}$$

An important remark

The random experiment selects one and only one outcome in Ω.

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $\Omega = \{HH, TH, HT, TT\}$

- The random experiment selects one and only one outcome in Ω.
- ► For instance, when we flip a fair coin twice
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects one of the elements of Ω.

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects one of the elements of Ω.
- In this case, its wrong to think that Ω = {H, T} and that the experiment selects two outcomes.

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects one of the elements of Ω.
- In this case, its wrong to think that Ω = {H, T} and that the experiment selects two outcomes.

Why?

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects one of the elements of Ω.
- In this case, its wrong to think that Ω = {H, T} and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects one of the elements of Ω.
- In this case, its wrong to think that Ω = {H, T} and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way.

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects one of the elements of Ω.
- In this case, its wrong to think that Ω = {H, T} and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- ► For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets *HH* or *TT* with probability 50% each.

- The random experiment selects one and only one outcome in Ω.
- ► For instance, when we flip a fair coin twice
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects one of the elements of Ω.
- In this case, its wrong to think that Ω = {H, T} and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- ► For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets *HH* or *TT* with probability 50% each. This is not captured by 'picking two outcomes.'

Modeling Uncertainty: Probability Space

1. Random Experiment

- 1. Random Experiment
- 2. Probability Space: Ω ; $Pr[\omega] \in [0, 1]$; $\sum_{\omega} Pr[\omega] = 1$.

- 1. Random Experiment
- 2. Probability Space: Ω ; $Pr[\omega] \in [0, 1]$; $\sum_{\omega} Pr[\omega] = 1$.
- 3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega$.

- 1. Random Experiment
- 2. Probability Space: Ω ; $Pr[\omega] \in [0, 1]$; $\sum_{\omega} Pr[\omega] = 1$.
- 3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega$.

Onwards in Probability.

Events, Conditional Probability, Independence, Bayes' Rule

CS70: On to Events.

Events, Conditional Probability, Independence, Bayes' Rule

CS70: On to Events.

Events, Conditional Probability, Independence, Bayes' Rule

Today: Events.

Setup:

Random Experiment.

Setup:

Random Experiment.
 Flip a fair coin twice.

- Random Experiment.
 Flip a fair coin twice.
- Probability Space.

- Random Experiment.
 Flip a fair coin twice.
- Probability Space.
 - **Sample Space:** Set of outcomes, Ω.

- Random Experiment.
 Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω . $\Omega = \{HH, HT, TH, TT\}$

- Random Experiment.
 Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω . $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!)

- Random Experiment.
 Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω.
 Ω = {HH, HT, TH, TT}
 (Note: Not Ω = {H, T} with two picks!)
 - **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$.

- Random Experiment.
 Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω.
 Ω = {HH, HT, TH, TT}
 (Note: Not Ω = {H, T} with two picks!)
 - ► **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$. $Pr[HH] = \cdots = Pr[TT] = 1/4$

Setup:

- Random Experiment.
 Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω.
 Ω = {HH, HT, TH, TT}
 (Note: Not Ω = {H, T} with two picks!)
 - ► **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$. $Pr[HH] = \cdots = Pr[TT] = 1/4$

1. $0 \leq Pr[\omega] \leq 1$.

- Random Experiment.
 Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω . $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!)
 - ▶ **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$. $Pr[HH] = \cdots = Pr[TT] = 1/4$
 - 1. $0 \le Pr[\omega] \le 1$. 2. $\sum_{\omega \in \Omega} Pr[\omega] = 1$.

- Random Experiment.
 Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω . $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!)
 - ▶ **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$. $Pr[HH] = \cdots = Pr[TT] = 1/4$
 - 1. $0 \le Pr[\omega] \le 1$. 2. $\sum_{\omega \in \Omega} Pr[\omega] = 1$.

 Ω

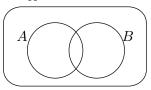


Figure : Two events

Ω

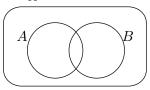


Figure : Two events

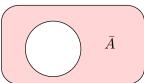
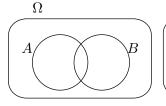


Figure : Complement (not)



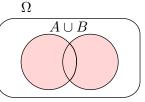


Figure : Two events

Figure : Union (or)

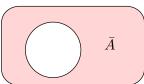
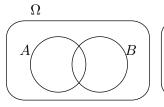


Figure : Complement (not)



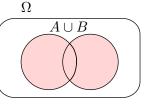
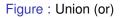


Figure : Two events



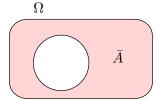


Figure : Complement (not)

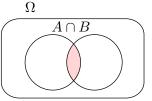


Figure : Intersection (and)

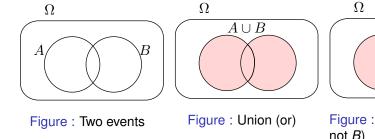


Figure : Difference (*A*, not *B*)

 $A \setminus B$

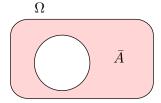
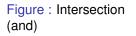
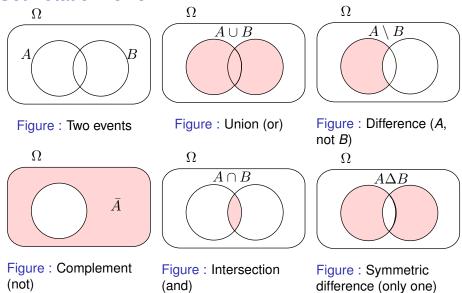


Figure : Complement (not)



Set notation review



Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

This leads to a definition!

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

This leads to a definition! **Definition**:

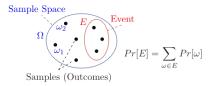
• An event, *E*, is a subset of outcomes: $E \subset \Omega$.

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

- An event, *E*, is a subset of outcomes: $E \subset \Omega$.
- The **probability of** *E* is defined as $Pr[E] = \sum_{\omega \in E} Pr[\omega]$.

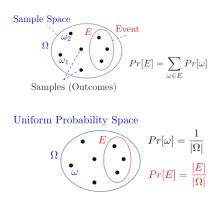
Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

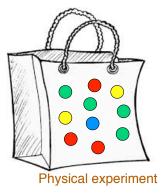
- An event, *E*, is a subset of outcomes: $E \subset \Omega$.
- The **probability of** *E* is defined as $Pr[E] = \sum_{\omega \in E} Pr[\omega]$.

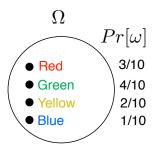


Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

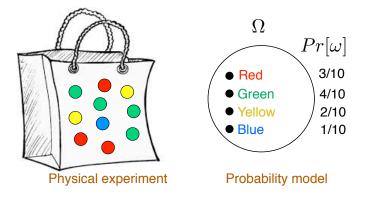
- An event, *E*, is a subset of outcomes: $E \subset \Omega$.
- The **probability of** *E* is defined as $Pr[E] = \sum_{\omega \in E} Pr[\omega]$.



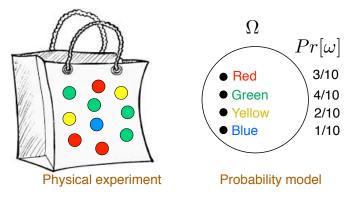




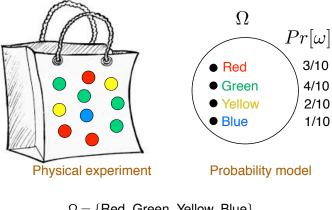
Probability model



 $\Omega = \{ \text{Red, Green, Yellow, Blue} \}$

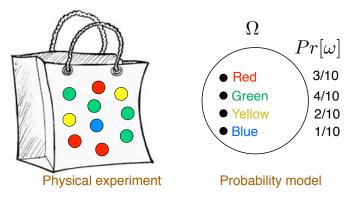


 $\Omega = \{ \text{Red, Green, Yellow, Blue} \}$ Pr[Red] =



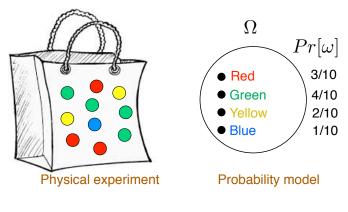
$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

 $Pr[\text{Red}] = rac{3}{10},$



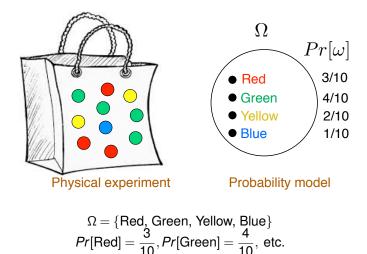
$$\Omega = \{\text{Red, Green, Yellow, Blue}\}\$$

 $Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] =$

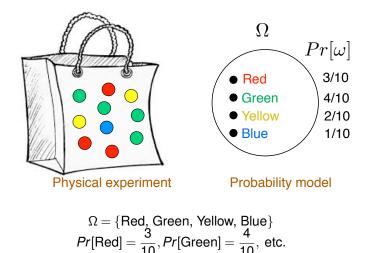


$$\Omega = \{\text{Red, Green, Yellow, Blue}\}$$

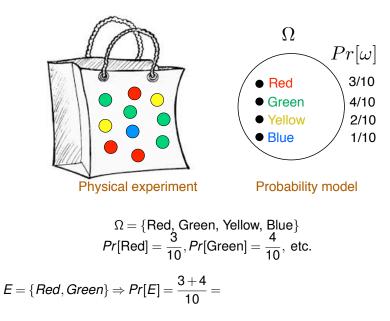
$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$

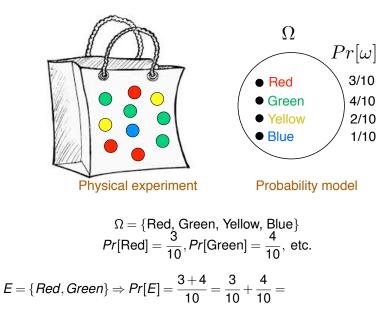


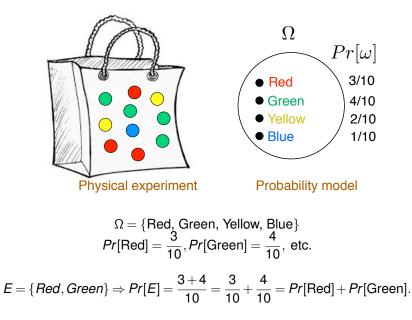
 $E = \{Red, Green\}$



 $E = \{Red, Green\} \Rightarrow Pr[E] =$



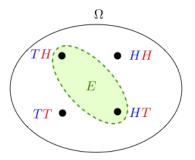


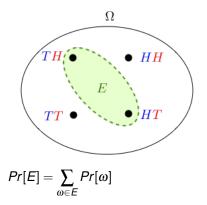


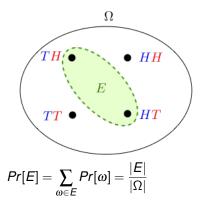
Sample Space, $\Omega = \{HH, HT, TH, TT\}$.

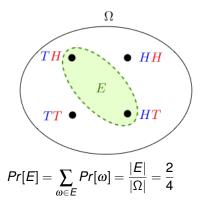
Sample Space, $\Omega = \{HH, HT, TH, TT\}$.

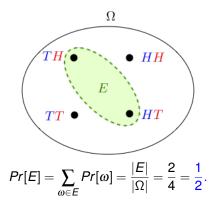
Uniform probability space: $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$.





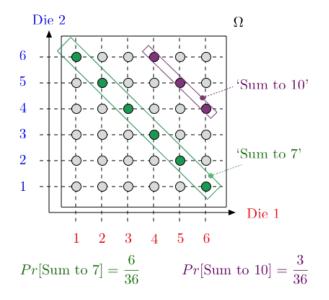






Roll a red and a blue die.

Roll a red and a blue die.



20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20};$

20 coin tosses

Sample space: $\Omega = set of 20 fair coin tosses.$

 $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

Answer:

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

What is more likely?

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

What is more likely?

 (E_1) Twenty Hs out of twenty, or

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E1) Twenty Hs out of twenty, or
 - (E₂) Ten Hs out of twenty?

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E1) Twenty Hs out of twenty, or
 - (E₂) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E1) Twenty Hs out of twenty, or
 - (E₂) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

Why?

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E1) Twenty Hs out of twenty, or
 - (E₂) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs;

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E1) Twenty Hs out of twenty, or
 - (E₂) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs; only one with twenty Hs.

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E1) Twenty Hs out of twenty, or
 - (E₂) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E1) Twenty Hs out of twenty, or
 - (E₂) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

$$|E_2| =$$

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E1) Twenty Hs out of twenty, or
 - (E₂) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

$$|E_2| = \binom{20}{10} =$$

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E1) Twenty Hs out of twenty, or
 - (E₂) Ten Hs out of twenty?

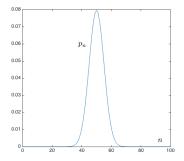
Answer: Ten Hs out of twenty.

$$|E_2| = {\binom{20}{10}} = 184,756.$$

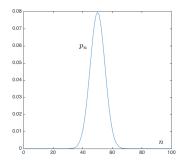
$$\Omega = \{H, T\}^{100};$$

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$

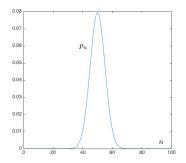


$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



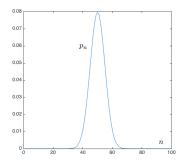
Event $E_n = n$ heads';

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



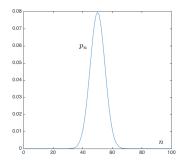
Event $E_n = n$ heads'; $|E_n| =$

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



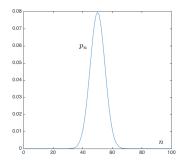
Event $E_n = n$ heads'; $|E_n| = \binom{100}{n}$

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



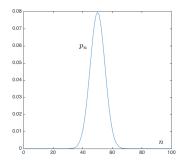
Event $E_n = n$ heads'; $|E_n| = \binom{100}{n}$ $p_n := \Pr[E_n] =$

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



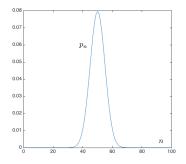
Event $E_n = n$ heads'; $|E_n| = \binom{100}{n}$ $p_n := \Pr[E_n] = \frac{|E_n|}{|\Omega|} =$

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



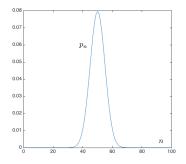
Event $E_n = n$ heads'; $|E_n| = \binom{100}{n}$ $p_n := \Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



Event $E_n = n$ heads'; $|E_n| = \binom{100}{n}$ $p_n := \Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$ Observe:

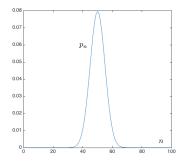
$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



Event $E_n = n$ heads'; $|E_n| = \binom{100}{n}$ $p_n := \Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$ Observe:

Concentration around mean:

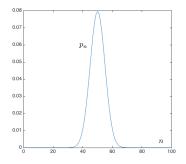
$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



Event $E_n = n$ heads'; $|E_n| = \binom{100}{n}$ $p_n := \Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$ Observe:

 Concentration around mean: Law of Large Numbers;

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$

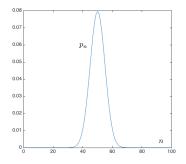


Event $E_n = n$ heads'; $|E_n| = \binom{100}{n}$ $p_n := \Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$ Observe:

 Concentration around mean: Law of Large Numbers;

Bell-shape:

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



Event $E_n = n$ heads'; $|E_n| = \binom{100}{n}$ $p_n := \Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$ Observe:

- Concentration around mean: Law of Large Numbers;
- Bell-shape: Central Limit Theorem.

Sample space: $\Omega = \text{set of 100 coin tosses}$

Sample space: Ω = set of 100 coin tosses = {*H*, *T*}¹⁰⁰.

Sample space: Ω = set of 100 coin tosses = {*H*, *T*}¹⁰⁰. $|\Omega| = 2 \times 2 \times \cdots \times 2$

Sample space: Ω = set of 100 coin tosses = {H, T}¹⁰⁰. $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}$.

Sample space: Ω = set of 100 coin tosses = {H, T}¹⁰⁰. $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}$.

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Sample space: Ω = set of 100 coin tosses = {H, T}¹⁰⁰. $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}$.

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event E = "100 coin tosses with exactly 50 heads"

Sample space: Ω = set of 100 coin tosses = {H, T}¹⁰⁰. $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}$.

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event E = "100 coin tosses with exactly 50 heads"

|E|? Choose 50 positions out of 100 to be heads.

Exactly 50 heads in 100 coin tosses.

Sample space: Ω = set of 100 coin tosses = {H, T}¹⁰⁰. $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}$.

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event E = "100 coin tosses with exactly 50 heads"

|E|? Choose 50 positions out of 100 to be heads. $|E| = \binom{100}{50}$.

Exactly 50 heads in 100 coin tosses.

Sample space: Ω = set of 100 coin tosses = {H, T}¹⁰⁰. $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}$.

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event E = "100 coin tosses with exactly 50 heads"

|E|? Choose 50 positions out of 100 to be heads. $|E| = \binom{100}{50}$.

$$Pr[E] = \frac{\binom{100}{50}}{2^{100}}.$$

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n}(2n/e)^{2n}}{[\sqrt{2\pi n}(n/e)^n]^2}$$

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$
$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n}(2n/e)^{2n}}{[\sqrt{2\pi n}(n/e)^n]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$

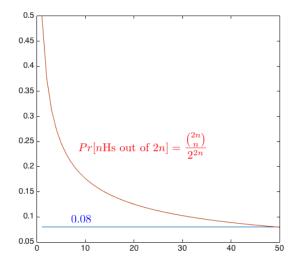
$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$
$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n}(2n/e)^{2n}}{[\sqrt{2\pi n}(n/e)^n]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$
$$\Pr[E] = \frac{|E|}{|\Omega|} =$$

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$
$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n}(2n/e)^{2n}}{[\sqrt{2\pi n}(n/e)^n]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$
$$\Pr[E] = \frac{|E|}{|\Omega|} = \frac{|E|}{2^{2n}} =$$

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$
$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n} (2n/e)^{2n}}{[\sqrt{2\pi n} (n/e)^n]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$
$$\Pr[E] = \frac{|E|}{|\Omega|} = \frac{|E|}{2^{2n}} = \frac{1}{\sqrt{\pi n}} =$$

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$
$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n} (2n/e)^{2n}}{[\sqrt{2\pi n} (n/e)^n]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$
$$\Pr[E] = \frac{|E|}{|\Omega|} = \frac{|E|}{2^{2n}} = \frac{1}{\sqrt{\pi n}} = \frac{1}{\sqrt{50\pi}} \approx .08.$$

Exactly 50 heads in 100 coin tosses.



1. Random Experiment

- 1. Random Experiment
- 2. Probability Space: Ω ; $Pr[\omega] \in [0, 1]$; $\sum_{\omega} Pr[\omega] = 1$.

- 1. Random Experiment
- 2. Probability Space: Ω ; $Pr[\omega] \in [0, 1]$; $\sum_{\omega} Pr[\omega] = 1$.
- 3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega$.

- 1. Random Experiment
- 2. Probability Space: Ω ; $Pr[\omega] \in [0, 1]$; $\sum_{\omega} Pr[\omega] = 1$.
- 3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega$.
- 4. Event: "subset of outcomes."

- 1. Random Experiment
- 2. Probability Space: Ω ; $Pr[\omega] \in [0, 1]$; $\sum_{\omega} Pr[\omega] = 1$.
- 3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega$.
- 4. Event: "subset of outcomes." $A \subseteq \Omega$. $Pr[A] = \sum_{w \in A} Pr[\omega]$
- 5. Some calculations.