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Second Rule of counting: If order does not matter.
Count with order.  Divide by number of orderings/sorted object.
Typically: (i).

Stars and Bars: Sample k objects with replacement from n.
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Pascal's Triangle Example: ("/") = (,",) + (7).
RHS: Number of subsets of n+ 1 items size k.
LHS: (,",) counts subsets of n+ 1 items with first item.
(}) counts subsets of n+ 1 items without first item.
Disjoint — so add!



CS70: On to probability.

’ Modeling Uncertainty: Probability Space




CS70: On to probability.

’ Modeling Uncertainty: Probability Space

1. Key Points
2. Random Experiments

3. Probability Space



Key Points



Key Points

» Uncertainty does not mean “nothing is known”



Key Points

» Uncertainty does not mean “nothing is known”

» How to best make decisions under uncertainty?



Key Points

» Uncertainty does not mean “nothing is known”

» How to best make decisions under uncertainty?

» Buy stocks



Key Points

» Uncertainty does not mean “nothing is known”

» How to best make decisions under uncertainty?

» Buy stocks
» Detect signals (transmitted bits, speech, images, radar,
diseases, etc.)



Key Points

» Uncertainty does not mean “nothing is known”

» How to best make decisions under uncertainty?

» Buy stocks

» Detect signals (transmitted bits, speech, images, radar,
diseases, etc.)

» Control systems (Internet, airplane, robots, self-driving
cars, schedule surgeries in a hospital, etc.)



Key Points

» Uncertainty does not mean “nothing is known”

» How to best make decisions under uncertainty?

» Buy stocks
» Detect signals (transmitted bits, speech, images, radar,

diseases, etc.)
» Control systems (Internet, airplane, robots, self-driving
cars, schedule surgeries in a hospital, etc.)

» How to best use ‘artificial’ uncertainty?



Key Points

» Uncertainty does not mean “nothing is known”

» How to best make decisions under uncertainty?

» Buy stocks
» Detect signals (transmitted bits, speech, images, radar,

diseases, etc.)
» Control systems (Internet, airplane, robots, self-driving
cars, schedule surgeries in a hospital, etc.)

» How to best use ‘artificial’ uncertainty?

» Play games of chance



Key Points

» Uncertainty does not mean “nothing is known”

» How to best make decisions under uncertainty?

» Buy stocks
» Detect signals (transmitted bits, speech, images, radar,

diseases, etc.)
» Control systems (Internet, airplane, robots, self-driving
cars, schedule surgeries in a hospital, etc.)

» How to best use ‘artificial’ uncertainty?

» Play games of chance
» Design randomized algorithms.



Key Points

v

Uncertainty does not mean “nothing is known”

v

How to best make decisions under uncertainty?

» Buy stocks

» Detect signals (transmitted bits, speech, images, radar,
diseases, etc.)

» Control systems (Internet, airplane, robots, self-driving
cars, schedule surgeries in a hospital, etc.)

v

How to best use ‘artificial’ uncertainty?

» Play games of chance
» Design randomized algorithms.

v

Probability



Key Points

v

Uncertainty does not mean “nothing is known”

v

How to best make decisions under uncertainty?

» Buy stocks

» Detect signals (transmitted bits, speech, images, radar,
diseases, etc.)

» Control systems (Internet, airplane, robots, self-driving
cars, schedule surgeries in a hospital, etc.)

v

How to best use ‘artificial’ uncertainty?

» Play games of chance
» Design randomized algorithms.

v

Probability
» Models knowledge about uncertainty



Key Points

v

Uncertainty does not mean “nothing is known”
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How to best make decisions under uncertainty?

» Buy stocks

» Detect signals (transmitted bits, speech, images, radar,
diseases, etc.)

» Control systems (Internet, airplane, robots, self-driving
cars, schedule surgeries in a hospital, etc.)

v

How to best use ‘artificial’ uncertainty?

» Play games of chance
» Design randomized algorithms.

v

Probability

» Models knowledge about uncertainty
» Optimizes use of knowledge to make decisions
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The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about
uncertainty.

Uncertainty = Fear Probability = Serenity

Our mission: help you discover the serenity of Probability, i.e., enable
you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.
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Flip a fair coin:

What do we mean by the likelihood of tails is 50%?
Two interpretations:
» Single coin flip: 50% chance of ‘tails’ [subjectivist]
Willingness to bet on the outcome of a single flip
» Many coin flips: About half yield ‘tails’ [frequentist]
Makes sense for many flips

» Question: Why does the fraction of tails converge to the same
value every time? Statistical Regularity! Deep!
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Random Experiment: Flip one Fair Coin

Flip a fair coin: model

Physical Experiment Probability Model

» The physical experiment is complex. (Shape, density, initial
momentum and position, ...)

» The Probability model is simple:

» A set Q of outcomes: Q={H, T}.
» A probability assigned to each outcome:
Pr[H]=0.5,Pr[T] =0.5.



Random Experiment: Flip one Unfair Coin



Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:



Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

. H:45%
T: 55%




Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

. H:45%
T: 55%

» Possible outcomes:



Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

. H:45%
T: 55%

» Possible outcomes: Heads (H) and Tails (T)



Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

. H:45%
T: 55%

» Possible outcomes: Heads (H) and Tails (T)

» Likelihoods:



Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

. H:45%
T: 55%

» Possible outcomes: Heads (H) and Tails (T)
> Likelihoods: H:pe(0,1)and T:1—p



Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

. H:45%
T: 55%

» Possible outcomes: Heads (H) and Tails (T)
> Likelihoods: H:pe(0,1)and T:1—p

» Frequentist Interpretation:



Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

. H:45%
T: 55%

» Possible outcomes: Heads (H) and Tails (T)
> Likelihoods: H:pe(0,1)and T:1—p
» Frequentist Interpretation:

Flip many times = Fraction 1 — p of tails



Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

. H:45%
T: 55%

v

Possible outcomes: Heads (H) and Tails (T)
Likelihoods: H:pc(0,1)and T:1—p

Frequentist Interpretation:

v

v

Flip many times = Fraction 1 — p of tails

v

Question:



Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

. H:45%
T: 55%

v

Possible outcomes: Heads (H) and Tails (T)
Likelihoods: H:pc(0,1)and T:1—p

Frequentist Interpretation:

v

v

Flip many times = Fraction 1 — p of tails

v

Question: How can one figure out p?



Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

. H:45%
T: 55%

v

Possible outcomes: Heads (H) and Tails (T)
Likelihoods: H:pc(0,1)and T:1—p

Frequentist Interpretation:

v

v

Flip many times = Fraction 1 — p of tails

v

Question: How can one figure out p? Flip many times



Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

. H:45%
T: 55%

v

Possible outcomes: Heads (H) and Tails (T)
Likelihoods: H:pc(0,1)and T:1—p

Frequentist Interpretation:

v

v

Flip many times = Fraction 1 — p of tails

v

Question: How can one figure out p? Flip many times

v

Tautology?



Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

. H:45%
T: 55%

v

Possible outcomes: Heads (H) and Tails (T)
Likelihoods: H:pc(0,1)and T:1—p

Frequentist Interpretation:

v

v

Flip many times = Fraction 1 — p of tails

v

Question: How can one figure out p? Flip many times

v

Tautology? No: Statistical regularity!
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Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin: model
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Flip Glued Coins

Flips two coins glued together side by side:

Glued coins

» Possible outcomes: {HT, TH}.
» Likelihoods: HT : 0.5, TH: 0.5.

» Note: Coins are glued so that they show different faces.
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Flip two Attached Coins

Flips two coins attached by a spring:

Attached coins

» Possible outcomes: {HH,HT, TH, TT}.
» Likelihoods: HH: 0.4 HT :0.1,TH:0.1,7TT :0.4.

» Note: Coins are attached so that they tend to show the same
face, unless the spring twists enough.
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Q is the set of possible outcomes;

v
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Here is a way to summarize the four random experiments:
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» Qis the set of possible outcomes;

» Each outcome has a probability (likelihood);
» The probabilities are > 0 and add up to 1;

» Fair coins: [1]; Glued coins: [3],[4];

Spring-attached coins: [2];
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Important remarks:

» Each outcome describes the two coins.

» E.g., HT is one outcome of each of the above experiments.
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Important remarks:

» Each outcome describes the two coins.
» E.g., HT is one outcome of each of the above experiments.

» It is wrong to think that the outcomes are {H, T} and that one
picks twice from that set.
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Important remarks:

Each outcome describes the two coins.

v

v

E.g., HT is one outcome of each of the above experiments.

It is wrong to think that the outcomes are {H, T} and that one
picks twice from that set.

v

v

Indeed, this viewpoint misses the relationship between the two
flips.
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Each outcome describes the two coins.
E.g., HT is one outcome of each of the above experiments.

It is wrong to think that the outcomes are {H, T} and that one
picks twice from that set.

Indeed, this viewpoint misses the relationship between the two
flips.

Each w € Q describes one outcome of the complete experiment.
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Important remarks:

>

>

>

Each outcome describes the two coins.
E.g., HT is one outcome of each of the above experiments.

It is wrong to think that the outcomes are {H, T} and that one
picks twice from that set.

Indeed, this viewpoint misses the relationship between the two
flips.

Each w € Q describes one outcome of the complete experiment.
Q and the probabilities specify the random experiment.
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Flipping n times
Flip a fair coin ntimes (some n>1):
» Possible outcomes: {TT---T,TT---H,... HH---H}.
Thus, 2" possible outcomes.
» Note: {TT---T,TT---H,....HH---H} = {H, T}".
A" :={(ay,...,an) | @1 €A,...,an € A}. |A"| = |A]".
> Likelihoods: 1/2" each.

2 "OTTT---TT
2 OTTT---TH
2~ "OTTT---HT
2~ "OTTT---HH

27"OHHH---HT
2”"OHHH---HE
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Roll two Dice

Roll a balanced 6-sided die twice:
» Possible outcomes: {1,2,3,4,5,6}% = {(a,b) |1 < a,b < 6}.
> Likelihoods: 1/36 for each.

Q

(6,6)
00000
oo0o00o0
o0o0O0o0
o00O0O0
o00O0O0
o0o0O0o0
)31 6,1

1/36 each

Physical Experiment Probability Model
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Probability Space.

1. A “random experiment”:

(a) Flip a biased coin;
(b) Flip two fair coins;
(c) Deal a poker hand.
2. A set of possible outcomes: .

(@) Q={H, T}
(b) Q= {HH,HT,TH,TT}; |Q| = 4;

(€) Q={ AM A) Ad AV K, AB A) Ad AT Q. ...

Q] = (552)-
3. Assign a probability to each outcome: Pr: Q — [0,1].

(@) Pr[H] = p,Pr[T] =1—p for some p € [0,1]
(b) Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = }
() PrlAM AO AR AV Kt | =---=1/(P)
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Probability Space: formalism.

Q is the sample space.
o € Q is a sample point. (Also called an outcome.)
Sample point @ has a probability Pr[w] where

> 0< Prlo] < 1;
> Yoo Prio] =1.

Sample Space
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Probability Space: Formalism.

In a uniform probability space each outcome @ is equally probable:

Prlo] = g forall € Q.

Uniform Probability Space

0 e NPl =

|\ e / forall w

Examples:

» Flipping two fair coins, dealing a poker hand are uniform
probability spaces.

» Flipping a biased coin is not a uniform probability space.
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Probability Space: Formalism
Simplest physical model of a uniform probability space:
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Simplest physical model of a non-uniform probability space:

Pr{w]
3/10

® Red

® Green 4/10

° 2/10

® Blue 110
Physical experiment Probability model

Q = {Red, Green, Yellow, Blue}

Pr[Red] = 3 Pr[Green] 10

Note: Probabilities are restricted to rational numbers: 3.
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Physical model of a general non-uniform probability space:

N

S 0O
) Prw]

" ® Green = 1 p1
. @ Purple =2 b2
® Vellow w Pw

Fraction p;
of circumference

Physical experiment Probability model

The roulette wheel stops in sector @ with probability py,.

Q={1,2,3,...,N}, Prlo] = py.
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An important remark

» The random experiment selects one and only one outcome in €.

» For instance, when we flip a fair coin twice

» Q={HH, TH,HT,TT}
» The experiment selects one of the elements of Q.

> In this case, its wrong to think that Q = {H, T} and that the
experiment selects two outcomes.

» Why? Because this would not describe how the two coin flips
are related to each other.

» For instance, say we glue the coins side-by-side so that they
face up the same way. Then one gets HH or TT with probability
50% each. This is not captured by ‘picking two outcomes.
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2. Probability Space: Q; Pr{w] € [0,1]; X, Pr[ow] = 1.
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’ Events, Conditional Probability, Independence, Bayes’ Rule

Today: Events.
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Set notation review

Q Q Q
AuUB A\ B
A
Figure : Two events Figure : Union (or) Figure : Difference (A,
not B)
Q Q Q
ANB AAB
A
Figure : Complement Figure : Intersection Figure : Symmetric

(not) (and) difference (only one)
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Probability of exactly one ‘heads’ in two coin flips?
Idea: Sum the probabilities of all the different outcomes that have
exactly one ‘heads’: HT, TH.

This leads to a definition!
Definition:

» Anevent, E, is a subset of outcomes: E C Q.
» The probability of E is defined as Pr[E] =Y g Pr{o].
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Pr{w]
3/10

4/10
2110
110

Physical experiment Probability model

Q = {Red, Green, Yellow, Iilue}
Pr[Red] = 3 Pr[Green] , etc.
3+4 3 4

E ={Red, Green} = Pr[E] = o =10 t70°" Pr[Red] + Pr[Green].
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Probability of exactly one heads in two coin flips?

Sample Space, Q = {HH,HT,TH, TT}.
Uniform probability space: Pr[HH]| = Pr[HT] = Pr[TH] = Pr[TT] = %.
Event, E, “exactly one heads”: {TH,HT}.

PrlE]= Y Prio]= IEl_2_
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Roll a red and a blue die.

Die 2 Q
A T
6 -4
2 -t- -l fSum to 107
4 -1
3 -1-
2 . . .'Smn to 7
1 -4-

> Die 1

: 3
Pr[Sum to 7] = — Pr[Sum to 10] = 36
: (510
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20 coin tosses
Sample space: Q = set of 20 fair coin tosses.

Q={T H}?={0,1}%0; |Q] =2%0.
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Example: 20 coin tosses.

20 coin tosses
Sample space: Q = set of 20 fair coin tosses.

Q={T H}?={0,1}%0; |Q] =2%0.

» What is more likely?

LN O] ::(1717171a1a1517171a1a151717171’171717171)’ or
> wp:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)?
Answer: Both are equally likely: Pr{m{] = Pr[wg] = T

» What is more likely?

(E1) Twenty Hs out of twenty, or
(E2) Ten Hs out of twenty?
Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs;

only one with twenty Hs. = Pr{E;] = & < Pr[Ep] = 1Bl

1Qf -
20
= =184,756.
|Es| (10) 84,756
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Probability of n heads in 100 coin tosses.

Q= {H,T}%; |q| = 2100,

60

80

100

Event E, = ‘nheads’; |E,| = (‘%)

100
pn = PriEs = &l = (o)

Observe:

» Concentration around mean:
Law of Large Numbers;

» Bell-shape: Central Limit
Theorem.
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Exactly 50 heads in 100 coin tosses.

Sample space: Q = set of 100 coin tosses = {H, T}'%.
IQ=2x2x..-x2=2100,

Uniform probability space: Pr[w] = zﬂﬁ

Event E = “100 coin tosses with exactly 50 heads”

|E|?

Choos?otgo positions out of 100 to be heads.
|E|= (50)-

(100)
PriE] = 360
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Calculation.

Stirling formula (for large n):

nl'~+v2zxn (g)n.

(2n> _V4mn(2n/e)*" 4"
n) " [Vern(n/e)2  Van

|El _ |E| 1 1

PrlE] = =——=——~.08.

Q| ~ 220 Jzn 50z
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Summary.

—_

o M @D

. Random Experiment

Probability Space: Q; Pr[w] € [0,1]; X, Pr[o] = 1.
Uniform Probability Space: Pr[w] = 1/|2| for all w € .
Event: “subset of outcomes.” AC Q. Pr[A] =Y yea Prio]

Some calculations.



