Today.
Today.

Farewell to modular arithmetic.
Farewell to modular arithmetic. Until the midterm.
Farewell to modular arithmetic. Until the midterm. And final.
Farewell to modular arithmetic. Until the midterm. And final. Coutability and Uncountability.
Today.

Farewell to modular arithmetic. Until the midterm. And final.
Coutability and Uncountability.
Undecidability.
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!

Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time? 4 \succ 3?

Yes!

4 \succ 3 (\text{mod} 7)?

Yes...

maybe?

\text{ Uh oh.. }

−3 \succ 3 (\text{mod} 7)?

Uh oh..

\text{−3} = 4 (\text{mod} 7).

Another problem.

4 is close to 3.

But can you get closer?

Sure.

3.5.

Closer.

Sure?

3.25, 3.1, 3.000001...

For real numbers we have the notion of limit, continuity, and derivative.......

....and Calculus.

For modular arithmetic...

no Calculus.

Sad face!
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative,
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

$4 > 3$?
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

$4 > 3$? Yes!

$-3 > 3$ (mod 7) ?

Yes...
maybe?

-3 = 4 (mod 7).

Another problem.

4 is close to 3.
But can you get closer?

Sure.
3.5.
Closer.
Sure?
3.25, 3.1, 3.000001. ...

For real numbers we have the notion of limit, continuity, and derivative.....and Calculus.

For modular arithmetic...
no Calculus.
Sad face!
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

$4 > 3$? Yes!

$4 > 3 \pmod{7}$?
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

\[4 > 3 \ ? \text{ Yes!} \]

\[4 > 3 \ (\text{mod } 7) \ ? \text{ Yes...} \]
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.
Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?
4 > 3 ? Yes!
4 > 3 (mod 7)? Yes...maybe?
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

$4 > 3$? Yes!

$4 > 3 \pmod{7}$? Yes...maybe?

$-3 > 3 \pmod{7}$?
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

4 > 3 ? Yes!

4 > 3 (mod 7)? Yes...maybe?

−3 > 3 (mod 7)? Uh oh..
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

$4 > 3$? Yes!

$4 > 3 \pmod{7}$? Yes...maybe?

$-3 > 3 \pmod{7}$? Uh oh.. $-3 = 4 \pmod{7}$.

Another problem.

4 is close to 3.
But can you get closer?
Sure.
3.5.
Closer.
Sure?
3.25, 3.1, 3.000001.
...
For real numbers we have the notion of limit, continuity, and Calculus.

For modular arithmetic...

no Calculus.
Sad face!
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!

Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

4 > 3 ? Yes!

4 > 3 (mod 7)? Yes...maybe?

−3 > 3 (mod 7)? Uh oh.. −3 = 4 (mod 7).

Another problem.
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

4 > 3? Yes!

4 > 3 (mod 7)? Yes...maybe?

−3 > 3 (mod 7)? Uh oh.. −3 = 4 (mod 7).

Another problem.
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

4 > 3? Yes!

4 > 3 (mod 7)? Yes...maybe?

−3 > 3 (mod 7)? Uh oh.. −3 = 4 (mod 7).

Another problem.

4 is close to 3.
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

\[4 > 3 \text{ ? Yes!} \]

\[4 > 3 \pmod{7}? \text{ Yes...maybe?} \]

\[-3 > 3 \pmod{7}? \text{ Uh oh.. } -3 = 4 \pmod{7}. \]

Another problem.

4 is close to 3.
But can you get closer?
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

4 > 3? Yes!

4 > 3 (mod 7)? Yes...maybe?

−3 > 3 (mod 7)? Uh oh.. −3 = 4 (mod 7).

Another problem.

4 is close to 3.
But can you get closer? Sure.
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.
 Add, subtract, commutative, associative, inverses!
 Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?
 $4 > 3$? Yes!
 $4 > 3 \pmod{7}$? Yes...maybe?
 $-3 > 3 \pmod{7}$? Uh oh.. $-3 = 4 \pmod{7}$.

Another problem.

4 is close to 3.
But can you get closer? Sure. 3.5.
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

- Add, subtract, commutative, associative, inverses!
- Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

4 > 3 ? Yes!

4 > 3 (mod 7)? Yes...maybe?

−3 > 3 (mod 7)? Uh oh.. −3 = 4 (mod 7).

Another problem.

4 is close to 3.
But can you get closer? Sure. 3.5. Closer.
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

\[4 > 3 \ ? \ Yes! \]

\[4 > 3 \ (\text{mod } 7)? \ Yes...maybe? \]

\[-3 > 3 \ (\text{mod } 7)? \ Uh \ oh.. \ -3 = 4 \ (\text{mod } 7). \]

Another problem.

4 is close to 3.
But can you get closer? Sure. 3.5. Closer. Sure?
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

4 > 3 ? Yes!
4 > 3 (mod 7)? Yes...maybe?
−3 > 3 (mod 7)? Uh oh.. −3 = 4 (mod 7).

Another problem.

4 is close to 3.
But can you get closer? Sure. 3.5. Closer. Sure? 3.25,
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

$4 > 3$? Yes!

$4 > 3 \pmod{7}$? Yes...maybe?

$-3 > 3 \pmod{7}$? Uh oh.. $-3 = 4 \pmod{7}$.

Another problem.

4 is close to 3.
But can you get closer? Sure. 3.5. Closer. Sure? 3.25, 3.1,
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

4 \succ 3 \text{? Yes!}

4 \succ 3 \pmod{7}? Yes...maybe?

\text{−}3 \succ 3 \pmod{7}? Uh oh.. \text{−}3 = 4 \pmod{7}.

Another problem.

4 is close to 3.
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

$4 > 3$? Yes!

$4 > 3 \pmod{7}$? Yes...maybe?

$-3 > 3 \pmod{7}$? Uh oh.. $-3 = 4 \pmod{7}$.

Another problem.

4 is close to 3.
But can you get closer? Sure. 3.5. Closer. Sure? 3.25, 3.1, 3.000001. ...
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

4 \geq 3 \text{ ?} \text{ Yes!}

4 \geq 3 \pmod{7} \text{ ?} \text{ Yes...maybe?}

-3 \geq 3 \pmod{7} \text{ ?} \text{ Uh oh.. } -3 = 4 \pmod{7}.

Another problem.

4 is close to 3.

For reals numbers we have the notion of limit, continuity,
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

4 > 3 ? Yes!
4 > 3 (mod 7)? Yes...maybe?
−3 > 3 (mod 7)? Uh oh.. −3 = 4 (mod 7).

Another problem.

4 is close to 3.
But can you get closer? Sure. 3.5. Closer. Sure? 3.25, 3.1, 3.000001. ...

For reals numbers we have the notion of limit, continuity, and derivative.......

Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.
 Add, subtract, commutative, associative, inverses!
 Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?
 \[4 > 3 \, ? \] Yes!
 \[4 > 3 \pmod{7} \, ? \] Yes...maybe?
 \[-3 > 3 \pmod{7} \, ? \] Uh oh.. \[-3 = 4 \pmod{7} \].

Another problem.

4 is close to 3.
But can you get closer? Sure. 3.5. Closer. Sure? 3.25, 3.1, 3.000001. ...

For reals numbers we have the notion of limit, continuity, and derivative......

....and Calculus.
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.
 Add, subtract, commutative, associative, inverses!
 Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?
 $4 > 3$? Yes!
 $4 > 3 \text{ (mod 7)}$? Yes...maybe?
 $-3 > 3 \text{ (mod 7)}$? Uh oh.. $-3 = 4 \text{ (mod 7)}$.

Another problem.

4 is close to 3.
But can you get closer? Sure. 3.5. Closer. Sure? 3.25, 3.1, 3.000001. ...

For reals numbers we have the notion of limit, continuity, and derivative......

....and Calculus.

For modular arithmetic...
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

4 > 3 ? Yes!

4 > 3 (mod 7)? Yes...maybe?

−3 > 3 (mod 7)? Uh oh.. −3 = 4 (mod 7).

Another problem.

4 is close to 3.
But can you get closer? Sure. 3.5. Closer. Sure? 3.25, 3.1, 3.000001. …

For reals numbers we have the notion of limit, continuity, and derivative.......

....and Calculus.

For modular arithmetic...no Calculus.
Farewell (for now) to modular arithmetic...

Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!

Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

\[4 > 3 \, ? \] Yes!

\[4 > 3 \, (\text{mod } 7) \, ? \] Yes...maybe?

\[-3 > 3 \, (\text{mod } 7) \, ? \] Uh oh.. \(-3 = 4 \, (\text{mod } 7)\).

Another problem.

4 is close to 3.

But can you get closer? Sure. 3.5. Closer. Sure? 3.25, 3.1, 3.000001. …

For reals numbers we have the notion of limit, continuity, and derivative…….

....and Calculus.

For modular arithmetic...no Calculus. Sad face!
Next up: how big is infinity.
Next up: how big is infinity.

- Countable
- Countably infinite.
- Enumeration
How big are the reals or the integers?

Infinite!
How big are the reals or the integers?

Infinite!

Is one bigger or smaller?
Same size?

- Circles \rightarrow Squares.
 - $f(\text{red circle}) = \text{red square}$
 - $f(\text{blue circle}) = \text{blue square}$
 - $f(\text{circle with black border}) = \text{square with black border}$

 One to One. Each circle mapped to different square.

 Onto. Each square mapped to from some circle.

 Isomorphism principle: If there is $f: D \rightarrow R$ that is one to one and onto, then, $|D| = |R|$.
Same size?

Same number?

Make a function f: Circles \rightarrow Squares.

- f(red circle) = red square
- f(blue circle) = blue square
- f(circle with black border) = square with black border

One to one. Each circle mapped to different square.

One to One: For all $x, y \in D$, $x \neq y \Rightarrow f(x) \neq f(y)$.

Onto. Each square mapped to from some circle.

Onto: For all $s \in R$, $\exists c \in D$, $s = f(c)$.

Isomorphism principle: If there is $f: D \rightarrow R$ that is one to one and onto, then, $|D| = |R|$.
Same size?

Same number?
Make a function $f : \text{Circles} \rightarrow \text{Squares}$.
Same size?

Same number?
Make a function $f : \text{Circles} \rightarrow \text{Squares}$.
$f(\text{red circle}) = \text{red square}$
Same size?

Same number?
Make a function $f : \text{Circles} \rightarrow \text{Squares}$.

$f(\text{red circle}) = \text{red square}$
$f(\text{blue circle}) = \text{blue square}$
Make a function $f : \text{Circles} \rightarrow \text{Squares}$.

- $f(\text{red circle}) = \text{red square}$
- $f(\text{blue circle}) = \text{blue square}$
- $f(\text{circle with black border}) = \text{square with black border}$
Same size?

Make a function $f : \text{Circles} \rightarrow \text{Squares}$.

- $f(\text{red circle}) = \text{red square}$
- $f(\text{blue circle}) = \text{blue square}$
- $f(\text{circle with black border}) = \text{square with black border}$

One to one.

Onto.

Isomorphism principle: If there is $f : D \rightarrow R$ that is one to one and onto, then, $|D| = |R|$.
Same size?

Make a function $f : \text{Circles} \to \text{Squares}$.

$f(\text{red circle}) = \text{red square}$

$f(\text{blue circle}) = \text{blue square}$

$f(\text{circle with black border}) = \text{square with black border}$

One to one. Each circle mapped to different square.
Same size?

Make a function $f : \text{Circles} \rightarrow \text{Squares}$.

- $f(\text{red circle}) = \text{red square}$
- $f(\text{blue circle}) = \text{blue square}$
- $f(\text{circle with black border}) = \text{square with black border}$

One to one. Each circle mapped to different square.

One to One: For all $x, y \in D$, $x \neq y \implies f(x) \neq f(y)$.
Same size?

Same number?

Make a function $f : \text{Circles} \rightarrow \text{Squares}$.

$f(\text{red circle}) = \text{red square}$

$f(\text{blue circle}) = \text{blue square}$

$f(\text{circle with black border}) = \text{square with black border}$

One to one. Each circle mapped to different square.

One to One: For all $x, y \in D$, $x \neq y \implies f(x) \neq f(y)$.

Onto.
Same size?

Same number?

Make a function $f : \text{Circles} \rightarrow \text{Squares}$.

$f(\text{red circle}) = \text{red square}$

$f(\text{blue circle}) = \text{blue square}$

$f(\text{circle with black border}) = \text{square with black border}$

One to one. Each circle mapped to different square.

One to One: For all $x, y \in D$, $x \neq y \implies f(x) \neq f(y)$.

Onto. Each square mapped to from some circle.
Same size?

Make a function $f : \text{Circles} \rightarrow \text{Squares}$.

- $f(\text{red circle}) = \text{red square}$
- $f(\text{blue circle}) = \text{blue square}$
- $f(\text{circle with black border}) = \text{square with black border}$

One to one. Each circle mapped to different square.

One to One: For all $x, y \in D$, $x \neq y \implies f(x) \neq f(y)$.

Onto. Each square mapped to from some circle.

Onto: For all $s \in R$, $\exists c \in D, s = f(c)$.

Same number?
Same size?

Make a function $f : \text{Circles} \rightarrow \text{Squares}$.
- $f(\text{red circle}) = \text{red square}$
- $f(\text{blue circle}) = \text{blue square}$
- $f(\text{circle with black border}) = \text{square with black border}$

One to one. Each circle mapped to different square.

One to One: For all $x, y \in D, x \neq y \implies f(x) \neq f(y)$.

Onto. Each square mapped to from some circle.

Onto: For all $s \in R, \exists c \in D, s = f(c)$.
Same size?

Make a function \(f : \text{Circles} \rightarrow \text{Squares} \).

\(f(\text{red circle}) = \text{red square} \)

\(f(\text{blue circle}) = \text{blue square} \)

\(f(\text{circle with black border}) = \text{square with black border} \)

One to one. Each circle mapped to different square.

One to One: For all \(x, y \in D \), \(x \neq y \implies f(x) \neq f(y) \).

Onto. Each square mapped to from some circle.

Onto: For all \(s \in R \), \(\exists c \in D, s = f(c) \).

Isomorphism principle: If there is \(f : D \rightarrow R \) that is one to one and onto, then, \(|D| = |R| \).
Isomorphism principle.

Given a function, \(f : D \rightarrow R \).
Isomorphism principle.

Given a function, \(f : D \rightarrow R \).

One to One:
Isomorphism principle.

Given a function, $f : D \rightarrow R$.

One to One:
For all $\forall x, y \in D$, $x \neq y \implies f(x) \neq f(y)$.

$f(\cdot)$ is a bijection if it is one to one and onto.

Isomorphism principle:
If there is a bijection $f : D \rightarrow R$ then $|D| = |R|$.
Isomorphism principle.

Given a function, \(f : D \rightarrow R \).

One to One:
For all \(\forall x, y \in D, x \neq y \implies f(x) \neq f(y) \).

or

\(\forall x, y \in D, x \neq y \implies f(x) \neq f(y) \).

|D| = |R| if there is a bijection \(f : D \rightarrow R \).
Isomorphism principle.

Given a function, \(f : D \rightarrow R \).

One to One:
For all \(\forall x, y \in D, x \neq y \implies f(x) \neq f(y) \).

or
\(\forall x, y \in D, f(x) = f(y) \implies x = y \).
Isomorphism principle.

Given a function, \(f : D \rightarrow R \).

One to One:
For all \(\forall x, y \in D, \ x \neq y \implies f(x) \neq f(y) \).

or

\(\forall x, y \in D, \ f(x) = f(y) \implies x = y \).
Isomorphism principle.

Given a function, $f : D \rightarrow R$.

One to One:
For all $\forall x, y \in D$, $x \neq y \implies f(x) \neq f(y)$.

or

$\forall x, y \in D$, $f(x) = f(y) \implies x = y$.

Onto: For all $y \in R$, $\exists x \in D$, $y = f(x)$.
Isomorphism principle.

Given a function, $f : D \rightarrow R$.

One to One:
For all $\forall x, y \in D$, $x \neq y \implies f(x) \neq f(y)$.

or

$\forall x, y \in D$, $f(x) = f(y) \implies x = y$.

Onto: For all $y \in R$, $\exists x \in D$, $y = f(x)$.

$f(\cdot)$ is a **bijection** if it is one to one and onto.
Isomorphism principle.

Given a function, $f : D \to R$.

One to One:
For all $\forall x, y \in D$, $x \neq y \implies f(x) \neq f(y)$.

or

$\forall x, y \in D$, $f(x) = f(y) \implies x = y$.

Onto: For all $y \in R$, $\exists x \in D$, $y = f(x)$.

$f(\cdot)$ is a **bijection** if it is one to one and onto.

Isomorphism principle:
Given a function, $f : D \rightarrow R$.

One to One:
For all $\forall x, y \in D$, $x \neq y \implies f(x) \neq f(y)$.

or

$\forall x, y \in D$, $f(x) = f(y) \implies x = y$.

Onto: For all $y \in R$, $\exists x \in D, y = f(x)$.

$f(\cdot)$ is a **bijection** if it is one to one and onto.

Isomorphism principle:
If there is a bijection $f : D \rightarrow R$ then $|D| = |R|$.
Countable.

How to count?
Countable.

How to count?

0,
Countable.

How to count?
0, 1,
How to count?
0, 1, 2,
Countable.

How to count?
0, 1, 2, 3,
Countable.

How to count?

0, 1, 2, 3, …
How to count?
0, 1, 2, 3, …
The Counting numbers.
Countable.

How to count?
0, 1, 2, 3, ...
The Counting numbers.
The natural numbers! \mathbb{N}
How to count?
0, 1, 2, 3, ...
The Counting numbers.
The natural numbers! N

Definition: S is **countable** if there is a bijection between S and some subset of N.
Countable.

How to count?
0, 1, 2, 3, ...
The Counting numbers.
The natural numbers! \(N \)

Definition: \(S \) is **countable** if there is a bijection between \(S \) and some subset of \(N \).

If the subset of \(N \) is finite, \(S \) has finite **cardinality**.
How to count?
0, 1, 2, 3, …
The Counting numbers.
The natural numbers! N

Definition: S is **countable** if there is a bijection between S and some subset of N.
If the subset of N is finite, S has finite **cardinality**.
If the subset of N is infinite, S is **countably infinite**.
Where’s 0?

Which is bigger?
Where’s 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.
Where’s 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0,
Where’s 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1,
Where’s 0?

Which is bigger?
The positive integers, \(\mathbb{Z}^+ \), or the natural numbers, \(\mathbb{N} \).

Natural numbers. 0, 1, 2,
Where's 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3,
Where’s 0?

Which is bigger?
The positive integers, \(\mathbb{Z}^+ \), or the natural numbers, \(\mathbb{N} \).

Natural numbers. 0, 1, 2, 3,
Where’s 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3,

Positive integers. 1,
Where’s 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3,

Positive integers. 1, 2,
Where’s 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3,

Positive integers. 1, 2, 3,
Where’s 0?

Which is bigger?
The positive integers, \(\mathbb{Z}^+ \), or the natural numbers, \(\mathbb{N} \).

Natural numbers. 0, 1, 2, 3, ….

Positive integers. 1, 2, 3, ….

Consider \(f(z) = z - 1 \).

For any two \(z_1 \neq z_2 \), \(f(z_1) \neq f(z_2) \).

One to one!

For any natural number \(n \), for \(z = n + 1 \), \(f(z) = (n+1)-1 = n \).

Onto for \(\mathbb{N} \)

Bijection! \(\Rightarrow |\mathbb{Z}^+| = |\mathbb{N}| \).

But.. but Where’s zero? “Comes from 1.”
Where’s 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3,

Positive integers. 1, 2, 3,

Where’s 0?
Where's 0?

Which is bigger?
The positive integers, \(\mathbb{Z}^+ \), or the natural numbers, \(\mathbb{N} \).

Natural numbers. 0, 1, 2, 3,

Positive integers. 1, 2, 3,

Where's 0?

More natural numbers!
Where’s 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3,
Positive integers. 1, 2, 3,

Where’s 0?

More natural numbers!

Consider $f(z) = z - 1$.
Where’s 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3,

Positive integers. 1, 2, 3,

Where’s 0?

More natural numbers!

Consider $f(z) = z - 1$.

For any two $z_1 \neq z_2$
Where's 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.
Natural numbers. 0, 1, 2, 3,
Positive integers. 1, 2, 3,
Where's 0?
More natural numbers!
Consider $f(z) = z - 1$.
For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1$
Where’s 0?

Which is bigger?
The positive integers, \(\mathbb{Z}^+ \), or the natural numbers, \(\mathbb{N} \).

Natural numbers. 0, 1, 2, 3,

Positive integers. 1, 2, 3,

Where’s 0?

More natural numbers!
Consider \(f(z) = z - 1 \).

For any two \(z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2) \).
Where’s 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3,

Positive integers. 1, 2, 3,

Where’s 0?

More natural numbers!

Consider $f(z) = z - 1$.

For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$.

One to one!
Where’s 0?

Which is bigger?
The positive integers, \(\mathbb{Z}^+ \), or the natural numbers, \(\mathbb{N} \).

Natural numbers. 0, 1, 2, 3,

Positive integers. 1, 2, 3,

Where’s 0?

More natural numbers!

Consider \(f(z) = z - 1 \).

For any two \(z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2) \).

One to one!

For any natural number \(n \),
Where’s 0?

Which is bigger?
The positive integers, \(\mathbb{Z}^+ \), or the natural numbers, \(\mathbb{N} \).

Natural numbers. 0, 1, 2, 3,

Positive integers. 1, 2, 3,

Where’s 0?

More natural numbers!

Consider \(f(z) = z - 1 \).

For any two \(z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2) \).

One to one!

For any natural number \(n \), for \(z = n + 1 \),
Where's 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3, ….

Positive integers. 1, 2, 3, ….

Where's 0?

More natural numbers!

Consider $f(z) = z - 1$.

For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one!

For any natural number n, for $z = n + 1$, $f(z)$
Where's 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3,

Positive integers. 1, 2, 3,

Where's 0?

More natural numbers!

Consider $f(z) = z - 1$.

For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$.

One to one!

For any natural number n, for $z = n + 1$, $f(z) = (n + 1) - 1$
Where’s 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3,

Positive integers. 1, 2, 3,

Where’s 0?

More natural numbers!

Consider $f(z) = z - 1$.

For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$.

One to one!

For any natural number n, for $z = n + 1$, $f(z) = (n + 1) - 1 = n$.

Where’s 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3,

Positive integers. 1, 2, 3,

Where’s 0?

More natural numbers!

Consider $f(z) = z - 1$.

For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$.

One to one!

For any natural number n, for $z = n + 1$, $f(z) = (n + 1) - 1 = n$.

Onto for \mathbb{N}
Where’s 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3,

Positive integers. 1, 2, 3,

Where’s 0?

More natural numbers!

Consider $f(z) = z - 1$.

For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$.

One to one!

For any natural number n, for $z = n + 1$, $f(z) = (n + 1) - 1 = n$.

Onto for \mathbb{N}

Bijection!
Where’s 0?

Which is bigger?
The positive integers, \(\mathbb{Z}^+ \), or the natural numbers, \(\mathbb{N} \).

Natural numbers. 0, 1, 2, 3,

Positive integers. 1, 2, 3,

Where’s 0?

More natural numbers!

Consider \(f(z) = z - 1 \).

For any two \(z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2) \).

One to one!

For any natural number \(n \), for \(z = n + 1 \), \(f(z) = (n + 1) - 1 = n \).

Onto for \(\mathbb{N} \)

Bijection! \(\implies |\mathbb{Z}^+| = |\mathbb{N}|. \)
Where’s 0?

Which is bigger?
The positive integers, \(\mathbb{Z}^+ \), or the natural numbers, \(\mathbb{N} \).

Natural numbers. 0, 1, 2, 3, ….
Positive integers. 1, 2, 3, ….
Where’s 0?
More natural numbers!
Consider \(f(z) = z - 1 \).

For any two \(z_1 \neq z_2 \) \(\implies z_1 - 1 \neq z_2 - 1 \) \(\implies f(z_1) \neq f(z_2) \).
One to one!
For any natural number \(n \), for \(z = n + 1 \), \(f(z) = (n + 1) - 1 = n \).
Onto for \(\mathbb{N} \)
Bijection! \(\implies |\mathbb{Z}^+| = |\mathbb{N}|. \)
But.. but
Where's 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3,
Positive integers. 1, 2, 3,
Where’s 0?

More natural numbers!
Consider $f(z) = z - 1$.

For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$.
One to one!

For any natural number n, for $z = n + 1$, $f(z) = (n + 1) - 1 = n$.
Onto for \mathbb{N}

Bijection! $\implies |\mathbb{Z}^+| = |\mathbb{N}|$.

But.. but Where’s zero?
Where’s 0?

Which is bigger?
The positive integers, \mathbb{Z}^+, or the natural numbers, \mathbb{N}.

Natural numbers. 0, 1, 2, 3, . . .

Positive integers. 1, 2, 3, . . .

Where’s 0?

More natural numbers!

Consider $f(z) = z - 1$.

For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$.

One to one!

For any natural number n, for $z = n + 1$, $f(z) = (n + 1) - 1 = n$.

Onto for \mathbb{N}

Bijection! $\implies |\mathbb{Z}^+| = |\mathbb{N}|$.

But.. but Where’s zero? “Comes from 1.”
A bijection is a bijection.
A bijection is a bijection.

Notice that there is a bijection between \(N \) and \(Z^+ \) as well.
A bijection is a bijection.

Notice that there is a bijection between N and Z^+ as well. $f(n) = n + 1$.
A bijection is a bijection.

Notice that there is a bijection between N and Z^+ as well.

$$f(n) = n + 1. \ 0 \to 1,$$
A bijection is a bijection.

Notice that there is a bijection between N and Z^+ as well. $f(n) = n + 1$. $0 \rightarrow 1, 1 \rightarrow 2,$
A bijection is a bijection.

Notice that there is a bijection between N and Z^+ as well. $f(n) = n + 1$. 0 \rightarrow 1, 1 \rightarrow 2, …
A bijection is a bijection.

Notice that there is a bijection between N and \mathbb{Z}^+ as well.

$f(n) = n + 1. \ 0 \rightarrow 1, 1 \rightarrow 2, \ldots$

Bijection from A to $B \iff$ a bijection from B to A.
A bijection is a bijection.

Notice that there is a bijection between N and \mathbb{Z}^+ as well.

$$f(n) = n + 1. \ 0 \rightarrow 1, \ 1 \rightarrow 2, \ldots$$

Bijection from A to $B \implies$ a bijection from B to $A.$
A bijection is a bijection.

Notice that there is a bijection between N and Z^+ as well.
$f(n) = n + 1. \ 0 \rightarrow 1, \ 1 \rightarrow 2, \ldots$

Bijection from A to $B \implies$ a bijection from B to A.

Inverse function!
A bijection is a bijection.

Notice that there is a bijection between \(N \) and \(\mathbb{Z}^+ \) as well.
\[f(n) = n + 1. \quad 0 \rightarrow 1, \, 1 \rightarrow 2, \, \ldots \]

Bijection from \(A \) to \(B \) \(\implies \) a bijection from \(B \) to \(A \).

Inverse function!

Can prove equivalence either way.
A bijection is a bijection.

Notice that there is a bijection between \(N \) and \(\mathbb{Z}^+ \) as well.
\[
 f(n) = n + 1. \ 0 \rightarrow 1, \ 1 \rightarrow 2, \ldots
\]

Bijection from \(A \) to \(B \) \(\implies \) a bijection from \(B \) to \(A \).

Inverse function!

Can prove equivalence either way.
Bijection to or from natural numbers implies countably infinite.
More large sets.

E - Even natural numbers?
More large sets.

E - Even natural numbers?

$f : \mathbb{N} \rightarrow E.$
More large sets.

\[E - \text{Even natural numbers?} \]
\[f : \mathbb{N} \to E. \]
\[f(n) \to 2n. \]
More large sets.

E - Even natural numbers?

$f : \mathbb{N} \rightarrow E.$

$f(n) \rightarrow 2n.$

Onto:
More large sets.

E - Even natural numbers?

$f : \mathbb{N} \rightarrow E.$

$f(n) \rightarrow 2n.$

Onto: $\forall e \in E,$ $f(e/2) = e.$
More large sets.

E - Even natural numbers?

$f : \mathbb{N} \rightarrow E$.

$f(n) \rightarrow 2n$.

Onto: $\forall e \in E$, $f(e/2) = e$. $e/2$ is natural since e is even.
E - Even natural numbers?

$f : \mathbb{N} \rightarrow E$.

$f(n) \rightarrow 2n$.

Onto: $\forall e \in E, f(e/2) = e$. $e/2$ is natural since e is even

One-to-one:
More large sets.

E - Even natural numbers?

$f : \mathbb{N} \rightarrow E.$

$f(n) \rightarrow 2n.$

Onto: $\forall e \in E, f(e/2) = e.$ $e/2$ is natural since e is even

One-to-one: $\forall x, y \in \mathbb{N}, x \neq y \implies 2x \neq 2y.$
More large sets.

\(E \) - Even natural numbers?

\(f : \mathbb{N} \to E. \)

\(f(n) \to 2n. \)

Onto: \(\forall e \in E, f(e/2) = e. \) \(e/2 \) is natural since \(e \) is even

One-to-one: \(\forall x, y \in \mathbb{N}, x \neq y \implies 2x \neq 2y. \) \(\equiv f(x) \neq f(y) \)
More large sets.

E - Even natural numbers?

$f : \mathbb{N} \to E$.

$f(n) \to 2n$.

Onto: $\forall e \in E$, $f(e/2) = e$. $e/2$ is natural since e is even

One-to-one: $\forall x, y \in \mathbb{N}, x \neq y \implies 2x \neq 2y$. $\equiv f(x) \neq f(y)$

Evens are countably infinite.
More large sets.

E - Even natural numbers?

$f : \mathbb{N} \rightarrow E.$

$f(n) \rightarrow 2n.$

Onto: $\forall e \in E, f(e/2) = e.$ $e/2$ is natural since e is even

One-to-one: $\forall x, y \in \mathbb{N}, x \neq y \implies 2x \neq 2y. \equiv f(x) \neq f(y)$

Evens are countably infinite.

Evens are same size as all natural numbers.
All integers?

What about Integers, \mathbb{Z}?
All integers?

What about Integers, \(Z \)?
Define \(f : N \to Z \).

\[
 f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd.}
\end{cases}
\]
All integers?

What about Integers, \mathbb{Z}?
Define $f : \mathbb{N} \rightarrow \mathbb{Z}$.

$$f(n) = \begin{cases}
 \frac{n}{2} & \text{if } n \text{ even} \\
 -\frac{n+1}{2} & \text{if } n \text{ odd.}
\end{cases}$$

One-to-one: For $x \neq y$
What about Integers, \(Z \)?
Define \(f : N \to Z \).

\[
f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd.}
\end{cases}
\]

One-to-one: For \(x \neq y \)
if \(x \) is even and \(y \) is odd,
All integers?

What about Integers, \mathbb{Z}?
Define $f : \mathbb{N} \to \mathbb{Z}$.

$$f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd.}
\end{cases}$$

One-to-one: For $x \neq y$
if x is even and y is odd,
then $f(x)$ is nonnegative and $f(y)$ is negative
All integers?

What about Integers, \(Z \)?

Define \(f : N \to Z \).

\[
f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd.}
\end{cases}
\]

One-to-one: For \(x \neq y \)
if \(x \) is even and \(y \) is odd,
then \(f(x) \) is nonnegative and \(f(y) \) is negative \(\implies f(x) \neq f(y) \)
All integers?

What about Integers, \(\mathbb{Z} \)?
Define \(f : \mathbb{N} \rightarrow \mathbb{Z} \).

\[
f(n) = \begin{cases}
n/2 & \text{if } n \text{ even} \\
-(n+1)/2 & \text{if } n \text{ odd.}
\end{cases}
\]

One-to-one: For \(x \neq y \)
if \(x \) is even and \(y \) is odd,
then \(f(x) \) is nonnegative and \(f(y) \) is negative \(\implies f(x) \neq f(y) \)
if \(x \) is even and \(y \) is even,
All integers?

What about Integers, \(Z \)?
Define \(f : N \to Z \).

\[
f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd.}
\end{cases}
\]

One-to-one: For \(x \neq y \)
if \(x \) is even and \(y \) is odd,
then \(f(x) \) is nonnegative and \(f(y) \) is negative \(\implies f(x) \neq f(y) \)
if \(x \) is even and \(y \) is even,
then \(x/2 \neq y/2 \)
All integers?

What about Integers, \mathbb{Z}?
Define $f : \mathbb{N} \rightarrow \mathbb{Z}$.

$$f(n) = \begin{cases}
\frac{n}{2} & \text{if } n \text{ even} \\
-(\frac{n+1}{2}) & \text{if } n \text{ odd.}
\end{cases}$$

One-to-one: For $x \neq y$
if x is even and y is odd, then $f(x)$ is nonnegative and $f(y)$ is negative $\implies f(x) \neq f(y)$
if x is even and y is even, then $x/2 \neq y/2 \implies f(x) \neq f(y)$

Integers and naturals have same size!
All integers?

What about Integers, \(\mathbb{Z} \)?
Define \(f : \mathbb{N} \to \mathbb{Z} \).

\[
f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd.}
\end{cases}
\]

One-to-one: For \(x \neq y \)
if \(x \) is even and \(y \) is odd,
then \(f(x) \) is nonnegative and \(f(y) \) is negative \(\implies f(x) \neq f(y) \)
if \(x \) is even and \(y \) is even,
then \(x/2 \neq y/2 \implies f(x) \neq f(y) \)

\[\ldots\]
All integers?

What about Integers, \mathbb{Z}? Define $f : \mathbb{N} \rightarrow \mathbb{Z}$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd}. \end{cases}$$

One-to-one: For $x \neq y$

if x is even and y is odd,
then $f(x)$ is nonnegative and $f(y)$ is negative $\implies f(x) \neq f(y)$

if x is even and y is even,
then $x/2 \neq y/2 \implies f(x) \neq f(y)$

....
All integers?

What about Integers, \(Z \)?
Define \(f : N \rightarrow Z \).

\[
f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd}.
\end{cases}
\]

One-to-one: For \(x \neq y \)
if \(x \) is even and \(y \) is odd,
then \(f(x) \) is nonnegative and \(f(y) \) is negative \(\Rightarrow f(x) \neq f(y) \)
if \(x \) is even and \(y \) is even,
then \(x/2 \neq y/2 \) \(\Rightarrow f(x) \neq f(y) \)

\[
\ldots
\]

Onto: For any \(z \in Z \),
All integers?

What about Integers, \(Z \)?
Define \(f : N \rightarrow Z \).

\[
f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd.}
\end{cases}
\]

One-to-one: For \(x \neq y \)
if \(x \) is even and \(y \) is odd,
then \(f(x) \) is nonnegative and \(f(y) \) is negative \(\implies f(x) \neq f(y) \)
if \(x \) is even and \(y \) is even,
then \(x/2 \neq y/2 \implies f(x) \neq f(y) \)

Onto: For any \(z \in Z \),
if \(z \geq 0 \), \(f(2z) = z \) and \(2z \in N \).
All integers?

What about Integers, \(\mathbb{Z} \)?
Define \(f : \mathbb{N} \rightarrow \mathbb{Z} \).

\[
\begin{align*}
 f(n) &= \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd.}
 \end{cases}
\end{align*}
\]

One-to-one: For \(x \neq y \)
if \(x \) is even and \(y \) is odd,
then \(f(x) \) is nonnegative and \(f(y) \) is negative \(\implies f(x) \neq f(y) \)
if \(x \) is even and \(y \) is even,
then \(x/2 \neq y/2 \implies f(x) \neq f(y) \)
....

Onto: For any \(z \in \mathbb{Z} \),
if \(z \geq 0 \), \(f(2z) = z \) and \(2z \in \mathbb{N} \).
if \(z < 0 \), \(f(2|z|-1) = z \) and \(2|z|+1 \in \mathbb{N} \).
All integers?

What about Integers, \mathbb{Z}?
Define $f : \mathbb{N} \rightarrow \mathbb{Z}$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd}. \end{cases}$$

One-to-one: For $x \neq y$
if x is even and y is odd,
then $f(x)$ is nonnegative and $f(y)$ is negative $\implies f(x) \neq f(y)$
if x is even and y is even,
then $x/2 \neq y/2 \implies f(x) \neq f(y)$
....

Onto: For any $z \in \mathbb{Z}$,
if $z \geq 0$, $f(2z) = z$ and $2z \in \mathbb{N}$.
if $z < 0$, $f(2|z| - 1) = z$ and $2|z| + 1 \in \mathbb{N}$.

Integers and naturals have same size!
Listings..

\[f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd.}
\end{cases} \]
Listings..

\[f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd.}
\end{cases} \]

Another View:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>1</td>
<td>(-1)</td>
</tr>
<tr>
<td>2</td>
<td>(1)</td>
</tr>
<tr>
<td>3</td>
<td>(-2)</td>
</tr>
<tr>
<td>4</td>
<td>(2)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Notice that: A listing “is” a bijection with a subset of natural numbers. Function \(f \equiv \) “Position in list.” If finite: bijection with \(\{0, \ldots, |S| - 1\} \). If infinite: bijection with \(\mathbb{N} \).
Listings..

\[f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd.}
\end{cases} \]

Another View:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Listings..

\[f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd.}
\end{cases} \]

Another View:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Listings..

$$f(n) = \begin{cases}
\frac{n}{2} & \text{if } n \text{ even} \\
-(n+1)/2 & \text{if } n \text{ odd.}
\end{cases}$$

Another View:

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Listings..

\[f(n) = \begin{cases}
\frac{n}{2} & \text{if } n \text{ even} \\
-(\frac{n+1}{2}) & \text{if } n \text{ odd.}
\end{cases} \]

Another View:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
</tr>
</tbody>
</table>
Listings..

\[
 f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd}.
\end{cases}
\]

Another View:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>−1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>−2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Notice that: A listing “is” a bijection with a subset of natural numbers.

Function \(\equiv \) “Position in list.”

If finite: bijection with \(\{0, \ldots, |S| - 1\} \)

If infinite: bijection with \(\mathbb{N} \).
Listings...

\[f(n) = \begin{cases}
 \frac{n}{2} & \text{if } n \text{ even} \\
 -\frac{n+1}{2} & \text{if } n \text{ odd.}
\end{cases} \]

Another View:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Listings..

\[f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd.}
\end{cases} \]

Another View:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Notice that: A listing “is” a bijection with a subset of natural numbers.
Listings..

\[f(n) = \begin{cases}
 \frac{n}{2} & \text{if } n \text{ even} \\
 -\frac{n+1}{2} & \text{if } n \text{ odd.}
\end{cases} \]

Another View:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Notice that: A listing “is” a bijection with a subset of natural numbers. Function \(\equiv \) “Position in list.”
Listings..

\[f(n) = \begin{cases}
\frac{n}{2} & \text{if } n \text{ even} \\
-(n+1)/2 & \text{if } n \text{ odd.}
\end{cases} \]

Another View:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Notice that: A listing “is” a bijection with a subset of natural numbers. Function \(\equiv \) “Position in list.”

If finite: bijection with \(\{0, \ldots, |S| - 1\} \)
Listings..

\[
 f(n) = \begin{cases}
 n/2 & \text{if } n \text{ even} \\
 -(n+1)/2 & \text{if } n \text{ odd.}
 \end{cases}
\]

Another View:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Notice that: A listing “is” a bijection with a subset of natural numbers. Function \(\equiv\) “Position in list.”
If finite: bijection with \(\{0, \ldots, |S| - 1\}\)
If infinite: bijection with \(\mathbb{N}\).
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
Enumerating (listing) a set implies that it is countable.
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
“Output element of S”,

$Z = \{0, 1, -1, 2, -2, \ldots\}$

When do you get to -1 at infinity?

Need to be careful.

61A— streams!
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”

...
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”

\[Z = \{0, 1, -1, 2, -2, \ldots\} \]

When do you get to -1 at infinity? Need to be careful.

\[61A -- \text{streams!} \]
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”

... Any element x of S has specific, finite position in list. $Z = \{0,$
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”

…

Any element x of S has specific, finite position in list.
$Z = \{0, 1, \ldots\}$
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”

... Any element x of S has *specific, finite* position in list.

$Z = \{0, 1, -1,$}
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”

...
Any element x of S has *specific, finite* position in list.
$Z = \{0, 1, -1, 2, \}$
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”

... Any element x of S has specific, finite position in list.
$Z = \{0, 1, -1, 2, -2, \}$
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”
“Output next element of S”

... Any element x of S has specific, finite position in list.

$Z = \{0, 1, -1, 2, -2, \ldots\}$
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”

…

Any element x of S has specific, finite position in list.

$Z = \{0, 1, -1, 2, -2, \ldots\}$

$Z = \{0, 1, 2, \ldots,\}$
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”

... Any element x of S has specific, finite position in list.

$Z = \{0, 1, -1, 2, -2, \ldots\}$

$Z = \{0, 1, 2, \ldots, \}$ and then $\{-1, -2, \ldots\}$
Enumerability \equiv \text{countability.}

Enumerating (listing) a set implies that it is countable.

“Output element of \(S\),

“Output next element of \(S\)"

... Any element \(x\) of \(S\) has specific, finite position in list.

\[
Z = \{0, 1, -1, 2, -2, \ldots\} \\
Z = \{\{0, 1, 2, \ldots, \} \text{ and then } \{-1, -2, \ldots\}\}
\]

When do you get to \(-1\)?
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”

... Any element x of S has specific, finite position in list.

$Z = \{0, 1, -1, 2, -2, \ldots\}$

$Z = \{\{0,1,2,\ldots\}\}$ and then $\{-1,-2,\ldots\}$

When do you get to -1? at infinity?
Enumerability \equiv \text{countability.}

Enumerating (listing) a set implies that it is countable.

“Output element of \(S \),
“Output next element of \(S \)

\ldots

Any element \(x \) of \(S \) has \textit{specific, finite} position in list.

\(Z = \{0, 1, -1, 2, -2, \ldots\} \)

\(Z = \{\{0, 1, 2, \ldots,\} \) and then \{−1, −2, \ldots\}\}

When do you get to −1? at infinity?

Need to be careful.
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”

…

Any element x of S has specific, finite position in list.

$Z = \{0, 1, -1, 2, -2, \ldots\}$

$Z = \{\{0, 1, 2, \ldots\}\}$ and then $\{-1, -2, \ldots\}$

When do you get to -1? at infinity?

Need to be careful.

61A
Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”

…

Any element x of S has specific, finite position in list.

$Z = \{0, 1, -1, 2, -2, \ldots\}$
$Z = \{\{0, 1, 2, \ldots\}, \text{ and then } \{-1, -2, \ldots\}\}$

When do you get to -1? at infinity?

Need to be careful.

61A —- streams!
Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.
Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x, of S,

\mathbb{Z}^+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.
All countably infinite sets have the same cardinality.
Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x, of S,
output only if $x \in T$.

Implications:
\mathbb{Z}^+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.
All countably infinite sets have the same cardinality.
Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x, of S,
output only if $x \in T$.
Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x, of S,
output only if $x \in T$.

Implications:
Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x, of S,
output only if $x \in T$.

Implications:
\mathbb{Z}^+ is countable.
Countably infinite subsets.

Enumerating a set implies countable. Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x, of S,
output only if $x \in T$.

Implications:
\mathbb{Z}^+ is countable.
It is infinite since the list goes on.
Enumerating a set implies countable.
Corollary: Any subset \(T \) of a countable set \(S \) is countable.

Enumerate \(T \) as follows:
Get next element, \(x \), of \(S \),
output only if \(x \in T \).

Implications:
\(\mathbb{Z}^+ \) is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x, of S,
output only if $x \in T$.

Implications:
\mathbb{Z}^+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.
Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x, of S,
output only if $x \in T$.

Implications:
\mathbb{Z}^+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.
All binary strings.
Enumeration example.

All binary strings.
\[B = \{0, 1\}^*. \]
All binary strings.
$B = \{0, 1\}^*$.
$B = \{\phi, \}$
Enumeration example.

All binary strings.
$B = \{0, 1\}^*.$

$B = \{\phi, 0, 1\}^*.$

Never get to 1.
Enumeration example.

All binary strings.
\[B = \{0, 1\}^*. \]
\[B = \{\phi, 0, 1, \ldots\}. \]
\[\phi \] is empty string.
For any string, it appears at some position in the list.
If \(n \) bits, it will appear before position \(2^n + 1 \).
Should be careful here.
Enumeration example.

All binary strings.

\(B = \{0, 1\}^* \).

\(B = \{\emptyset, 0, 1, 00, \ldots\} \).

\(\emptyset \) is empty string.
For any string, it appears at some position in the list.
If \(n \) bits, it will appear before position \(2^n + 1 \).

Should be careful here.
All binary strings.

\[B = \{0, 1\}^*. \]

\[B = \{\phi, 0, 1, 00, 01, 10, 11, \ldots\} \]

\[\phi \text{ is empty string.} \]

For any string, it appears at some position in the list. If \(n \) bits, it will appear before position \(2^n + 1 \).

Should be careful here.
All binary strings.

\[B = \{0, 1\}^*. \]

\[B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \ldots\}. \]
All binary strings.

\[B = \{0, 1\}^*. \]

\[B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \ldots\}. \]

\(\phi \) is empty string.
Enumeration example.

All binary strings.

\[B = \{0, 1\}^* . \]

\[B = \{\emptyset, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \ldots\} . \]

\(\emptyset \) is empty string.

For any string, it appears at some position in the list.
All binary strings.

\[B = \{0, 1\}^*. \]

\[B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \ldots\}. \]

\(\phi \) is empty string.

For any string, it appears at some position in the list. If \(n \) bits, it will appear before position \(2^{n+1} \).
All binary strings.

$B = \{0, 1\}^*$.

$B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \ldots\}$.

ϕ is empty string.

For any string, it appears at some position in the list. If n bits, it will appear before position 2^{n+1}.

Should be careful here.
All binary strings.
$B = \{0, 1\}^*$.

$B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \ldots\}$.
ϕ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2^{n+1}.

Should be careful here.

$B = \{\phi; , 0, 00, 000, 0000, \ldots\}$
All binary strings.
\(B = \{0, 1\}^\ast. \)

\(B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \ldots\}. \)

\(\phi \) is empty string.

For any string, it appears at some position in the list. If \(n \) bits, it will appear before position \(2^{n+1}. \)

Should be careful here.

\(B = \{\phi; 0, 00, 000, 0000, \ldots\} \)

Never get to 1.
More fractions?

Enumerate the rational numbers in order...
More fractions?

Enumerate the rational numbers in order...
0,...,1/2,..
More fractions?

Enumerate the rational numbers in order...
0, ..., 1/2, ..
Where is 1/2 in list?
More fractions?

Enumerate the rational numbers in order...
0, ..., 1/2,..

Where is 1/2 in list?
After 1/3, which is after 1/4, which is after 1/5...
More fractions?

Enumerate the rational numbers in order...
0, ..., 1/2, ..
Where is 1/2 in list?
After 1/3, which is after 1/4, which is after 1/5...
A thing about fractions:
More fractions?

Enumerate the rational numbers in order...
0, ... , 1/2, ..

Where is 1/2 in list?

After 1/3, which is after 1/4, which is after 1/5...

A thing about fractions:
any two fractions has another fraction between it.
More fractions?

Enumerate the rational numbers in order...
0, ..., 1/2, ...

Where is 1/2 in list?
After 1/3, which is after 1/4, which is after 1/5...

A thing about fractions:
any two fractions has another fraction between it.
Can’t even get to “next” fraction!
Enumerate the rational numbers in order...
0, ..., 1/2, ...

Where is 1/2 in list?

After 1/3, which is after 1/4, which is after 1/5...

A thing about fractions:
any two fractions has another fraction between it.

Can’t even get to “next” fraction!

Can’t list in “order”.
Pairs of natural numbers.

Consider pairs of natural numbers: \(N \times N \)
Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$
E.g.: $(1, 2)$, $(100, 30)$, etc.
Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$
E.g.: $(1, 2)$, $(100, 30)$, etc.

For finite sets S_1 and S_2,

Consider pairs of natural numbers: $N \times N$

E.g.: $(1, 2), (100, 30), \text{etc.}$

For finite sets S_1 and S_2, then $S_1 \times S_2$
Consider pairs of natural numbers: $N \times N$

E.g.: $(1, 2), (100, 30)$, etc.

For finite sets S_1 and S_2, then $S_1 \times S_2$ has size $|S_1| \times |S_2|$.
Consider pairs of natural numbers: $N \times N$
E.g.: $(1,2)$, $(100,30)$, etc.

For finite sets S_1 and S_2,
then $S_1 \times S_2$
has size $|S_1| \times |S_2|$.
Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$
E.g.: $(1, 2)$, $(100, 30)$, etc.

For finite sets S_1 and S_2,
then $S_1 \times S_2$
has size $|S_1| \times |S_2|$.

So, $N \times N$ is countably infinite
Consider pairs of natural numbers: $N \times N$
E.g.: $(1, 2), (100, 30)$, etc.

For finite sets S_1 and S_2, then $S_1 \times S_2$ has size $|S_1| \times |S_2|$.

So, $N \times N$ is countably infinite squared.
Pairs of natural numbers.

Consider pairs of natural numbers: \(N \times N \)
E.g.: \((1, 2), (100, 30), \) etc.

For finite sets \(S_1 \) and \(S_2 \),
then \(S_1 \times S_2 \)
has size \(|S_1| \times |S_2| \).

So, \(N \times N \) is countably infinite squared ??
Pairs of natural numbers.

Enumerate in list:

- (0, 0)
- (1, 0)
- (0, 1)
- (2, 0)
- (1, 1)
- (0, 2)

...(more pairs)...

The pair \((a, b)\), is in first \(\approx (a + b + 1)(a + b)/2\) elements of list! (i.e., "triangle").

Countably infinite.

Same size as the natural numbers!!
Pairs of natural numbers.

Enumerate in list:
(0,0),

The pair (a, b), is in list $(a+b+1)(a+b)/2$ elements of list!

(i.e., "triangle").

Countably infinite.

Same size as the natural numbers!!
Pairs of natural numbers.

Enumerate in list:
(0,0), (1,0),
Pairs of natural numbers.

Enumerate in list:
(0,0), (1,0), (0,1),
Pairs of natural numbers.

Enumerate in list:
(0,0), (1,0), (0,1), (2,0),
Pairs of natural numbers.

Enumerate in list:
(0,0), (1,0), (0,1), (2,0), (1,1),
Pairs of natural numbers.

Enumerate in list:
(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ……
Pairs of natural numbers.

Enumerate in list:
(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ……

The pair (a, b), is in first \(\frac{a+b+1}{2} \) elements of list!

Countably infinite.
Same size as the natural numbers!!
Pairs of natural numbers.

Enumerate in list:

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), ……

The pair \((a, b)\), is in first \(\approx \frac{a+b+1}{2}(a+b)\) elements of list!

(i.e., “triangle”).

Countably infinite.

Same size as the natural numbers!!
Pairs of natural numbers.

Enumerate in list:
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), ……

The pair \((a, b)\), is in first ⌊(a + b + 1)(a + b)⌋ elements of list!

(i.e., “triangle”).

Countably infinite.

Same size as the natural numbers!!
Pairs of natural numbers.

Enumerate in list:

\((0,0), (1,0), (0,1), (2,0), (1,1), (0,2), \ldots\)
Pairs of natural numbers.

Enumerate in list:
(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), …

The pair \((a, b)\), is in first \(\approx (a+b+1)(a+b)/2\) elements of list!
(i.e., "triangle").

Countably infinite.
Same size as the natural numbers!!
Pairs of natural numbers.

Enumerate in list:

(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), …

The pair \((a, b)\), is in first \(\approx (a+b+1)(a+b)/2\) elements of list!

(i.e., "triangle").

Countably infinite.

Same size as the natural numbers!!
Pairs of natural numbers.

Enumerate in list:

\((0,0), (1,0), (0,1), (2,0), (1,1), (0,2), \ldots\)

The pair \((a,b)\), is in first
\((a+b+1)(a+b)/2\) elements of list!

(i.e., “triangle”).

Countably infinite.

Same size as the natural numbers!!
Pairs of natural numbers.

Enumerate in list:

\[(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), \ldots.\]
Pairs of natural numbers.

Enumerate in list:

\[(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), \ldots\]

The pair \((a, b)\), is in first \(\approx \frac{a + b + 1}{2}\) elements of list!

(i.e., "triangle").

Countably infinite.

Same size as the natural numbers!!
Pairs of natural numbers.

Enumerate in list:
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), ……

The pair \((a, b)\), is in first \(\approx (a + b + 1)(a + b)/2\) elements of list!

(i.e., “triangle”).

Countably infinite.

Same size as the natural numbers!!
Pairs of natural numbers.

Enumerate in list:
\((0,0), (1,0), (0,1), (2,0), (1,1), (0,2), \ldots\)

\[\text{The pair } (a, b), \text{ is in first } \approx (a + b + 1)(a + b)/2 \text{ elements of list!}\]
Pairs of natural numbers.

Enumerate in list:
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), …

The pair \((a, b)\), is in first \(\approx (a + b + 1)(a + b)/2\) elements of list!
(i.e., “triangle”).
Pairs of natural numbers.

Enumerate in list:
(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), …

The pair \((a, b)\), is in first \(\approx (a + b + 1)(a + b)/2\) elements of list!
(i.e., “triangle”).

Countably infinite.
Pairs of natural numbers.

Enumerate in list:
(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), …

The pair \((a, b)\), is in first \(\approx (a + b + 1)(a + b)/2\) elements of list!
(i.e., “triangle”).

Countably infinite.

Same size as the natural numbers!!
Rationals?

Positive rational number.
Positive rational number.
Lowest terms: a/b
Rationals?

Positive rational number.
Lowest terms: \(a/b \)
\(a, b \in N \)
Rationals?

Positive rational number.
Lowest terms: \(a/b \)
\(a, b \in \mathbb{N} \)
with \(\gcd(a, b) = 1 \).
Rationals?

Positive rational number.
Lowest terms: \(a/b \)
\(a, b \in N \)
with \(\gcd(a, b) = 1 \).

Infinite subset of \(N \times N \).
Rationals?

Positive rational number.
Lowest terms: \(a/b \)
\(a, b \in N \)
with \(\gcd(a, b) = 1 \).

Infinite subset of \(N \times N \).

Countably infinite!
Rationals?

Positive rational number.
Lowest terms: a/b
$a, b \in N$
with $gcd(a, b) = 1$.

Infinite subset of $N \times N$.

Countably infinite!

All rational numbers?
Rationals?

Positive rational number.
Lowest terms: \(a/b \)
\[a, b \in \mathbb{N} \]
with \(\gcd(a, b) = 1 \).

Infinite subset of \(\mathbb{N} \times \mathbb{N} \).

Countably infinite!

All rational numbers?

Negative rationals are countable.
Rationals?

Positive rational number.
Lowest terms: \(a/b \)
\(a, b \in N \)
with \(\gcd(a, b) = 1 \).

Infinite subset of \(N \times N \).

Countably infinite!

All rational numbers?
Negative rationals are countable. (Same size as positive rationals.)
Rationals?

Positive rational number.
Lowest terms: \(\frac{a}{b} \)
\(a, b \in N \)
with \(\gcd(a, b) = 1 \).

Infinite subset of \(N \times N \).

Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list.
Rationals?

Positive rational number.
Lowest terms: a/b
$a, b \in N$
with $gcd(a, b) = 1$.

Infinite subset of $N \times N$.

Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list.

First negative, then nonegative
Rationals?

Positive rational number.
Lowest terms: a/b
$a, b \in N$
with $gcd(a, b) = 1$.

Infinite subset of $N \times N$.

Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list.

First negative, then nonegative ???
Rationals?

Positive rational number. Lowest terms: \(\frac{a}{b} \), \(a, b \in \mathbb{N} \) with \(\gcd(a, b) = 1 \).

Infinite subset of \(\mathbb{N} \times \mathbb{N} \).

Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list.

First negative, then nonegative ??? No!
Rationals?

Positive rational number.
Lowest terms: a/b
$a,b \in N$
with $gcd(a,b) = 1$.

Infinite subset of $N \times N$.
Countably infinite!

All rational numbers?
Negative rationals are countable. (Same size as positive rationals.)
Put all rational numbers in a list.
First negative, then nonegative ??? No!
Repeatedly and alternatively take one from each list.
Rationals?

Positive rational number.
Lowest terms: a/b
$a, b \in N$
with $gcd(a, b) = 1$.

Infinite subset of $N \times N$.
Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)
Put all rational numbers in a list.
First negative, then nonegative ??? No!

Repeatedly and alternatively take one from each list.
Interleave Streams in 61A
Positive rational number.

Lowest terms: a/b
$a, b \in N$
with $gcd(a, b) = 1$.

Infinite subset of $N \times N$.

Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list.

First negative, then nonegative ??? No!

Repeatedly and alternatively take one from each list.

Interleave Streams in 61A

The rationals are countably infinite.
Real numbers.

Real numbers are same size as integers?
The reals.

Are the set of reals countable?
The reals.

Are the set of reals countable?
Lets consider the reals [0, 1].
The reals.

Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.
The reals.

Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

$0.5000000000...$
The reals.

Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

$.500000000\ldots$ (1/2)
Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

$.500000000...$ (1/2)

$.785398162...$
Are the set of reals countable?

Let's consider the reals \([0, 1]\).

Each real has a decimal representation.

- \(0.500000000\ldots\) (\(1/2\))
- \(0.785398162\ldots\) (\(\pi/4\))
The reals.

Are the set of reals countable?

Let's consider the reals [0, 1].

Each real has a decimal representation.

.500000000... (1/2)
.785398162... π/4
.367879441...
Are the set of reals countable?

Let's consider the reals [0, 1].

Each real has a decimal representation.

.500000000... (1/2)
.785398162... π/4
.367879441... 1/e
Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

- $0.500000000...$ (1/2)
- $0.785398162...$ $\pi/4$
- $0.367879441...$ $1/e$
- $0.632120558...$
Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

- $0.500000000...$ $(1/2)$
- $0.785398162...$ $\pi/4$
- $0.367879441...$ $1/e$
- $0.632120558...$ $1 - 1/e$
The reals.

Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

- $.500000000...$ (1/2)
- $.785398162...$ $\pi/4$
- $.367879441...$ $1/e$
- $.632120558...$ $1 - 1/e$
- $.345212312...$
Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

$.500000000\ldots$ (1/2)
$.785398162\ldots$ $\pi/4$
$.367879441\ldots$ $1/e$
$.632120558\ldots$ $1 – 1/e$
$.345212312\ldots$ Some real number
Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

- $0.500000000...$ (1/2)
- $0.785398162...$ $\pi/4$
- $0.367879441...$ $1/e$
- $0.632120558...$ $1 - 1/e$
- $0.345212312...$ Some real number
Diagonalization.

If countable, there a listing, L contains all reals.
Diagonalization.

If countable, there a listing, L contains all reals. For example
Diagonalization.

If countable, there a listing, L contains all reals. For example
0: .5000000000...

Construct "diagonal" number:

Diagonal Number:

Digit i is 7 if number i's ith digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list!

Diagonal number not in list.

Diagonal number is real.

Contradiction!

Subset $[0, 1]$ is not countable!!
Diagonalization.

If countable, there a listing, L contains all reals. For example
0: .500000000...
1: .785398162...
Diagonalization.

If countable, there a listing, \(L \) contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
Diagonalization.

If countable, there a listing, \(L \) contains all reals. For example

0: \(.500000000\ldots\)
1: \(.785398162\ldots\)
2: \(.367879441\ldots\)
3: \(.632120558\ldots\)
4: \(.345212312\ldots\)

Construct “diagonal” number:

\[
\begin{array}{cccccccc}
7 & 7 & 6 & 7 & \ldots
\end{array}
\]

Diagonal Number:

Digit \(i \) is 7 if number \(i \)'s \(i \)th digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list!
Diagonal number not in list.
Diagonal number is real.
Contradiction!
Subset \([0, 1]\) is not countable!!
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

...
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

Construct “diagonal” number:
Diagonalization.

If countable, there a listing, \(L \) contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

Construct “diagonal” number: .7
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

Construct “diagonal” number: .77
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

:\

Construct “diagonal” number: .776
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: \textcolor{red}{.5}000000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

Construct “diagonal” number: .7767
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .5000000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

:

Construct “diagonal” number: .77677
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .5000000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

Construct “diagonal” number: .77677…
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

Construct “diagonal” number: .77677…

Diagonal Number:
Diagonalization.

If countable, there a listing, \(L \) contains all reals. For example

0: \(.500000000\ldots\)
1: \(.785398162\ldots\)
2: \(.367879441\ldots\)
3: \(.632120558\ldots\)
4: \(.345212312\ldots\)

Construct “diagonal” number: \(.77677\ldots\)

Diagonal Number: Digit \(i \) is 7 if number \(i \)’s \(i \)th digit is not 7
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .5000000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...
...

Construct “diagonal” number: .77677...

Diagonal Number:Digit i is 7 if number i’s ith digit is not 7 and 6 otherwise.
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: $.5000000000...$

1: $.785398162...$

2: $.367879441...$

3: $.632120558...$

4: $.345212312...$

...

Construct “diagonal” number: $.77677...$

Diagonal Number: Digit i is 7 if number i’s ith digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list!
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

Construct “diagonal” number: .77677...

Diagonal Number: Digit i is 7 if number i’s ith digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list! Diagonal number not in list.
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

Construct “diagonal” number: .77677…

Diagonal Number: Digit i is 7 if number i’s ith digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list! Diagonal number not in list.

Diagonal number is real.
Diagonalization.

If countable, there a listing, *L contains all reals*. For example

0: \(.500000000\ldots\)
1: \(.785398162\ldots\)
2: \(.367879441\ldots\)
3: \(.632120558\ldots\)
4: \(.345212312\ldots\)

Construct “diagonal” number: \(.77677\ldots\)

Diagonal Number: Digit *i* is 7 if number *i*’s *i*th digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list!

Diagonal number not in list.

Diagonal number is real.

Contradiction!
Diagonalization.

If countable, there a listing, \(L \) contains all reals. For example

0: \(.500000000...\)
1: \(.785398162...\)
2: \(.367879441...\)
3: \(.632120558...\)
4: \(.345212312...\)

Construct “diagonal” number: \(.77677...\)

Diagonal Number: Digit \(i \) is 7 if number \(i \)’s \(i \)th digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list!

Diagonal number not in list.

Diagonal number is real.

Contradiction!

Subset \([0,1]\) is not countable!!
All reals?

Subset [0, 1] is not countable!!
All reals?

Subset \([0, 1]\) is not countable!!

What about all reals?
All reals?

Subset $[0,1]$ is not countable!!

What about all reals?
No.
All reals?

Subset $[0, 1]$ is not countable!!

What about all reals?
No.

Any subset of a countable set is countable.
All reals?

Subset $[0, 1]$ is not countable!!

What about all reals?
No.

Any subset of a countable set is countable.
If reals are countable then so is $[0, 1]$.
Diagonalization.

1. Assume that a set S can be enumerated.
Diagonalization.

1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
Diagonalization.

1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
3. Use the diagonal from the list to construct a new element t.
4. Show that t is different from all elements in the list $= \implies t$ is not in the list.
5. Show that t is in S.
6. Contradiction.
1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
3. Use the diagonal from the list to construct a new element t.
4. Show that t is different from all elements in the list.
5. Show that t is in S.
6. Contradiction.
Diagonalization.

1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
3. Use the diagonal from the list to construct a new element t.
4. Show that t is different from all elements in the list $\implies t$ is not in the list.
1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
3. Use the diagonal from the list to construct a new element t.
4. Show that t is different from all elements in the list $\Rightarrow t$ is not in the list.
5. Show that t is in S.
6. Contradiction.
Diagonalization.

1. Assume that a set \(S \) can be enumerated.
2. Consider an arbitrary list of all the elements of \(S \).
3. Use the diagonal from the list to construct a new element \(t \).
4. Show that \(t \) is different from all elements in the list \(\implies t \) is not in the list.
5. Show that \(t \) is in \(S \).
6. Contradiction.
Another diagonalization.

The set of all subsets of N.
Another diagonalization.

The set of all subsets of \(N \).

Example subsets of \(N \): \(\{0\}, \)

\(\{0, \ldots, 7\} \), evens, odds, primes,
Another diagonalization.

The set of all subsets of N.

Example subsets of N: $\{0\}$, $\{0, \ldots, 7\}$,
Another diagonalization.

The set of all subsets of \mathbb{N}.

Example subsets of \mathbb{N}: $\{0\}$, $\{0,\ldots,7\}$,
Another diagonalization.

The set of all subsets of \(N \).

Example subsets of \(N \): \(\{0\} \), \(\{0, \ldots, 7\} \), evens,
Another diagonalization.

The set of all subsets of N.

Example subsets of N: $\{0\}$, $\{0, \ldots, 7\}$, evens, odds,
Another diagonalization.

The set of all subsets of \(N \).

Example subsets of \(N \): \(\{0\} \), \(\{0, \ldots, 7\} \), evens, odds, primes,
Another diagonalization.

The set of all subsets of N.

Example subsets of N: \{0\}, \{0, \ldots, 7\},

evens, odds, primes,
Another diagonalization.

The set of all subsets of N.

Example subsets of N: $\{0\}$, $\{0,\ldots,7\}$, evens, odds, primes,

Assume is countable.
Another diagonalization.

The set of all subsets of N.

Example subsets of N: \{0\}, \{0,\ldots,7\}, evens, odds, primes,

Assume is countable.

There is a listing, L, that contains all subsets of N.
Another diagonalization.

The set of all subsets of \mathbb{N}.

Example subsets of \mathbb{N}: $\{0\}$, $\{0, \ldots, 7\}$, evens, odds, primes,

Assume is countable.

There is a listing, L, that contains all subsets of \mathbb{N}.

Define a diagonal set, D:
Another diagonalization.

The set of all subsets of \(N \).

Example subsets of \(N \): \(\{0\} \), \(\{0, \ldots, 7\} \), evens, odds, primes,

Assume is countable.

There is a listing, \(L \), that contains all subsets of \(N \).

Define a diagonal set, \(D \):
If \(i \)th set in \(L \) does not contain \(i \), \(i \in D \).
Another diagonalization.

The set of all subsets of N.

Example subsets of N: $\{0\}$, $\{0, \ldots, 7\}$, evens, odds, primes,

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.

L does not contain all subsets of N.
Contradiction.

Theorem: The set of all subsets of N is not countable.
(The set of all subsets of S, is the powerset of N.)
Another diagonalization.

The set of all subsets of N.

Example subsets of N: $\{0\}$, $\{0,\ldots,7\}$, evens, odds, primes,

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.

D is different from ith set in L for every i.
$= \Rightarrow D$ is not in the listing.

L does not contain all subsets of N.
Contradiction.

Theorem:
The set of all subsets of N is not countable.
(The set of all subsets of S, is the powerset of N.)

Another diagonalization.

The set of all subsets of \mathbb{N}.

Example subsets of \mathbb{N}: $\{0\}$, $\{0, \ldots, 7\}$, evens, odds, primes,

Assume is countable.

There is a listing, L, that contains all subsets of \mathbb{N}.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.

D is different from ith set in L for every i.

(The set of all subsets of \mathbb{S}, is the powerset of \mathbb{N}.)
Another diagonalization.

The set of all subsets of \(N \).

Example subsets of \(N \): \(\{0\} \), \(\{0, \ldots, 7\} \),
evens, odds, primes,

Assume is countable.

There is a listing, \(L \), that contains all subsets of \(N \).

Define a diagonal set, \(D \):
If \(i \)th set in \(L \) does not contain \(i \), \(i \in D \).
otherwise \(i \not\in D \).

\(D \) is different from \(i \)th set in \(L \) for every \(i \).
\(\implies \) \(D \) is not in the listing.
Another diagonalization.

The set of all subsets of N.

Example subsets of N: $\{0\}$, $\{0,\ldots,7\}$,
evens, odds, primes,

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.

D is different from ith set in L for every i.
$\implies D$ is not in the listing.

D is a subset of N.
Another diagonalization.

The set of all subsets of \(N \).

Example subsets of \(N \): \(\{0\} \), \(\{0,\ldots,7\} \), evens, odds, primes,

Assume is countable.

There is a listing, \(L \), that contains all subsets of \(N \).

Define a diagonal set, \(D \):
If \(i \)th set in \(L \) does not contain \(i \), \(i \in D \).
otherwise \(i \notin D \).

\(D \) is different from \(i \)th set in \(L \) for every \(i \).
\(\implies \) \(D \) is not in the listing.

\(D \) is a subset of \(N \).

\(L \) does not contain all subsets of \(N \).
Another diagonalization.

The set of all subsets of N.

Example subsets of N: $\{0\}$, $\{0, \ldots, 7\}$, evens, odds, primes,

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.

D is different from ith set in L for every i.
$\implies D$ is not in the listing.

D is a subset of N.
L does not contain all subsets of N.
Contradiction.
Another diagonalization.

The set of all subsets of \(N \).

Example subsets of \(N \): \(\{0\} \), \(\{0,\ldots,7\} \), evens, odds, primes,

Assume is countable.

There is a listing, \(L \), that contains all subsets of \(N \).

Define a diagonal set, \(D \):
If \(i \)th set in \(L \) does not contain \(i \), \(i \in D \).
otherwise \(i \notin D \).

\(D \) is different from \(i \)th set in \(L \) for every \(i \).
\[\implies D \] is not in the listing.

\(D \) is a subset of \(N \).

\(L \) does not contain all subsets of \(N \).

Contradiction.

Theorem: The set of all subsets of \(N \) is not countable.
Another diagonalization.

The set of all subsets of \(N \).

Example subsets of \(N \): \(\{0\} \), \(\{0,\ldots,7\} \),
evens, odds, primes,

Assume is countable.

There is a listing, \(L \), that contains all subsets of \(N \).

Define a diagonal set, \(D \):
If \(i \)th set in \(L \) does not contain \(i \), \(i \in D \).
otherwise \(i \notin D \).

\(D \) is different from \(i \)th set in \(L \) for every \(i \).
\(\implies D \) is not in the listing.

\(D \) is a subset of \(N \).

\(L \) does not contain all subsets of \(N \).

Contradiction.

Theorem: The set of all subsets of \(N \) is not countable.
(The set of all subsets of \(S \), is the powerset of \(N \).)
Diagonalize Natural Number.

Natural numbers have a listing, \(L \).
Diagonalize Natural Number.

Natural numbers have a listing, L.

Make a diagonal number, D:

differ from ith element of L in ith digit.
Natural numbers have a listing, \(L \).
Make a diagonal number, \(D \):
differ from \(i \)th element of \(L \) in \(i \)th digit.
Differs from all elements of listing.
Diagonalize Natural Number.

Natural numbers have a listing, \(L \).

Make a diagonal number, \(D \):

differ from \(i \)th element of \(L \) in \(i \)th digit.

Differs from all elements of listing.

\(D \) is a natural number...
Diagonalize Natural Number.

Natural numbers have a listing, L.

Make a diagonal number, D:

- differ from ith element of L in ith digit.

- Differs from all elements of listing.

D is a natural number... Not.
Diagonalize Natural Number.

Natural numbers have a listing, L.

Make a diagonal number, D:

differ from ith element of L in ith digit.

Differs from all elements of listing.

D is a natural number... Not.

Any natural number has a finite number of digits.
Natural numbers have a listing, L.

Make a diagonal number, D:

differ from ith element of L in ith digit.

Differs from all elements of listing.

D is a natural number... Not.

Any natural number has a finite number of digits.

“Construction” requires an infinite number of digits.
The Continuum hypothesis.

There is no set with cardinality between the naturals and the reals.
The Continuum hypothesis.

There is no set with cardinality between the naturals and the reals. First of Hilbert’s problems!
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : \mathbb{R}^+ \rightarrow [0, 1]$.
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : R^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & \text{for } 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & \text{for } x > 1/2
\end{cases}$$
Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?

$f : \mathbb{R}^+ \rightarrow [0,1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$

One to one.
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : R^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$

One to one. $x \neq y$
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : R^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & \text{if } 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & \text{if } x > 1/2
\end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$,

Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : R^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$, a shift
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : R^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?
$f : R^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \leq x \leq 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$
If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.
If neither in $[0, 1/2]$
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : R^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.

If neither in $[0, 1/2]$ a division
Cardinalities of uncountable sets?

Cardinality of \([0, 1]\) smaller than all the reals?

\[f : \mathbb{R}^+ \rightarrow [0, 1]. \]

\[f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases} \]

One to one. \(x \neq y \)

If both in \([0, 1/2]\), a shift \(\implies f(x) \neq f(y) \).
If neither in \([0, 1/2]\) a division \(\implies f(x) \neq f(y) \).
Cardinalities of uncountable sets?

Cardinality of \([0, 1]\) smaller than all the reals?

\[f : \mathbb{R}^+ \rightarrow [0, 1]. \]

\[f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases} \]

One to one. \(x \neq y \)
If both in \([0, 1/2]\), a shift \(\implies f(x) \neq f(y). \)
If neither in \([0, 1/2]\) a division \(\implies f(x) \neq f(y). \)
If one is in \([0, 1/2]\) and one isn’t,
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : R^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.

If neither in $[0, 1/2]$ a division $\implies f(x) \neq f(y)$.

If one is in $[0, 1/2]$ and one isn’t, different ranges
Cardinalities of uncountable sets?

Cardinality of \([0, 1]\) smaller than all the reals?

\[f : R^+ \rightarrow [0, 1]. \]

\[
f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}
\]

One to one. \(x \neq y \)
If both in \([0, 1/2]\), a shift \(\implies f(x) \neq f(y). \)
If neither in \([0, 1/2]\) a division \(\implies f(x) \neq f(y). \)
If one is in \([0, 1/2]\) and one isn’t, different ranges \(\implies f(x) \neq f(y). \)
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : \mathbb{R}^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.

If neither in $[0, 1/2]$ a division $\implies f(x) \neq f(y)$.

If one is in $[0, 1/2]$ and one isn’t, different ranges $\implies f(x) \neq f(y)$.

Bijection!
Cardinality of $[0, 1]$ smaller than all the reals?

$f : R^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \leq x \leq 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.

If neither in $[0, 1/2]$ a division $\implies f(x) \neq f(y)$.

If one is in $[0, 1/2]$ and one isn’t, different ranges $\implies f(x) \neq f(y)$.

Bijection!

$[0, 1]$ is same cardinality as nonnegative reals!
Generalized Continuum hypothesis.

There is no infinite set whose cardinality is between the cardinality of an infinite set and its power set.
Generalized Continuum hypothesis.

There is no infinite set whose cardinality is between the cardinality of an infinite set and its power set.

The powerset of a set is the set of all subsets.
Resolution of hypothesis?

Gödel. 1940.

Can't use math!

If math doesn't contain a contradiction.

This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?

Self reference.

Can a program refer to a program?

Can a program refer to itself?

Uh oh....
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.
This statement is a lie.
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.

This statement is a lie.

Is the statement above true?
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.

This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.
Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.

This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.

This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?

Self reference.
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.

This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?

Self reference.

Can a program refer to a program?
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.

This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?

Self reference.

Can a program refer to a program?
Can a program refer to itself?
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.

This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?

Self reference.

Can a program refer to a program?
Can a program refer to itself?

Uh oh....
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x))$$ \hspace{1cm} (1)
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

\[\exists y \forall x (x \in y \iff P(x)) \quad (1) \]

\(y \) is the set of elements that satisfies the proposition \(P(x) \).
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x))$$ \hspace{1cm} (1)

y is the set of elements that satisfies the proposition $P(x)$.

$P(x) = x \notin x$.
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

\[\exists y \forall x (x \in y \iff P(x)) \] \hspace{1cm} (1)

\(y \) is the set of elements that satisfies the proposition \(P(x) \).
\(P(x) = x \notin x \). Definable set.
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

\[\exists y \forall x (x \in y \iff P(x)) \] \hspace{1cm} (1)

\(y \) is the set of elements that satisfies the proposition \(P(x) \).

\(P(x) = x \notin x \). Definable set.

There exists a \(y \) that satisfies statement 1 for \(P(\cdot) \).
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x))$$ \hspace{1cm} (1)

y is the set of elements that satisfies the proposition $P(x)$.

$P(x) = x \notin x$. Definable set.

There exists a y that satisfies statement 1 for $P(\cdot)$.

Take $x = y$.

Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

\[\exists y \forall x (x \in y \iff P(x)) \] \hspace{1cm} (1)

\(y \) is the set of elements that satisfies the proposition \(P(x) \).

\(P(x) = x \notin x \). Definable set.

There exists a \(y \) that satisfies statement 1 for \(P(\cdot) \).

Take \(x = y \).

\[y \in y \iff y \notin y. \]
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

\[\exists y \forall x (x \in y \iff P(x)) \quad (1) \]

\(y \) is the set of elements that satisfies the proposition \(P(x) \).

\(P(x) = x \notin x \). Definable set.

There exists a \(y \) that satisfies statement 1 for \(P(\cdot) \).

Take \(x = y \).

\[y \in y \iff y \notin y. \]

Oops!
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

\[\exists y \forall x (x \in y \iff P(x)) \] \hspace{1cm} (1)

\(y \) is the set of elements that satisfies the proposition \(P(x) \).

\(P(x) = x \notin x \). Definable set.

There exists a \(y \) that satisfies statement 1 for \(P(\cdot) \).

Take \(x = y \).

\[y \in y \iff y \notin y. \]

Oops! Not Definable.
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

\[\exists y \forall x (x \in y \iff P(x)) \]

(1)

\(y \) is the set of elements that satisfies the proposition \(P(x) \).

\(P(x) = x \notin x \). Definable set.

There exists a \(y \) that satisfies statement 1 for \(P(\cdot) \).

Take \(x = y \).

\[y \in y \iff y \notin y. \]

Oops! Not Definable.

What type of object is a set that contain sets?
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

\[\exists y \forall x (x \in y \iff P(x)) \]

(1)

\(y \) is the set of elements that satisfy the proposition \(P(x) \).

\(P(x) = x \notin x \). Definable set.

There exists a \(y \) that satisfies statement 1 for \(P(\cdot) \).

Take \(x = y \).

\[y \in y \iff y \notin y. \]

Oops! Not Definable.

What type of object is a set that contain sets?

Axioms changed.
Changing Axioms?

Goedel:
Any set of axioms is either

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or
Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

BTW:
Cantor.. bipolar disorder..
Goedel.. starved himself out of fear of being poisoned..
Russell.. was fine...
..but for two schizophrenic children..

Dangerous work?
See Logicomix by Doxiaidis, Papadimitriou (professor here), Papadatos, Di Donna.
Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals.”
Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals.”
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)
Changing Axioms?

Goedel:
Any set of axioms is either
inconsistent (can prove false statements) or
incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinatility between reals and naturals.”
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)

Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)
Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinatity between reals and naturals.”
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)

Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)

BTW:
Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinarity between reals and naturals.”
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:
Cantor
Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals.”
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)

Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)

BTW:
Cantor ..bipolar disorder..
Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals.”
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)

BTW:
Cantor..bipolar disorder..
Goedel
Changing Axioms?

Goedel:
Any set of axioms is either
inconsistent (can prove false statements) or
incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals.”
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)
Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)

BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals.”
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell
Changing Axioms?

Goedel:
Any set of axioms is either
inconsistent (can prove false statements) or
incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals.”
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)

Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)

BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell .. was fine...
Changing Axioms?

Goedel:
Any set of axioms is either
inconsistent (can prove false statements) or
incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinatity between reals and naturals.”
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)

Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)

BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell .. was fine.....but for ...
Changing Axioms?

Goedel:
Any set of axioms is either
inconsistent (can prove false statements) or
incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinatity between reals and naturals.”
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)

Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)

BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell .. was fine.....but for ...two schizophrenic children..
Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinatity between reals and naturals.”
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)

BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell .. was fine.....but for ...two schizophrenic children..
Dangerous work?
Changing Axioms?

Goedel:
Any set of axioms is either
inconsistent (can prove false statements) or
incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinatity between reals and naturals.”
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)

Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)

BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell .. was fine.....but for ...two schizophrenic children..
Dangerous work?

See Logicomix by Doxiaidis, Papadimitriou (professor here),
Papadatos, Di Donna.
Is it actually useful?

Write me a program checker!

Check that the compiler works!

Check that the compiler terminates on a certain input.

HALT \((P,I)\)

\(P\) - program
\(I\) - input.

Determines if \(P(I)\) (run on \(I\)) halts or loops forever.

Notice: Need a computer... with the notion of a stored program!!!! (not an adding machine, not a person and an adding machine.)

Program is a text string. Text string can be an input to a program. Program can be an input to a program.
Is it actually useful?

Write me a program checker!
Check that the compiler works!
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

$HALT(P, I)$
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

$HALT(P, I)$

P - program
Is it actually useful?

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

\(\text{HALT}(P, I) \)

- \(P \) - program
- \(I \) - input.
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

\textit{HALT}(P, I)

\begin{itemize}
 \item \textit{P} - program
 \item \textit{I} - input.
\end{itemize}

Determines if \textit{P(I)} (\textit{P} run on \textit{I}) halts or loops forever.
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

\[\text{HALT}(P, I) \]

- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Notice:
Is it actually useful?

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

\(HALT(P, I)\)

\(P\) - program

\(I\) - input.

Determines if \(P(I)\) (\(P\) run on \(I\)) halts or loops forever.

Notice:

Need a computer
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

\[\text{HALT}(P, I) \]
\[P \text{ - program} \]
\[I \text{ - input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

$$HALT(P, I)$$

- P - program
- I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine!)
Is it actually useful?

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

$HALT(P, I)$

P - program
P - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

\[\text{HALT}(P, I) \]

\[P - \text{program} \]
\[I - \text{input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

\[\text{HALT}(P, I) \]
\[P - \text{program} \]
\[I - \text{input}. \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)

Program is a text string.
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

$HALT(P, I)$

P - program
I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)

Program is a text string.
Text string can be an input to a program.
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

$\text{HALT}(P, I)$

P - program
I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Notice:

Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)

Program is a text string.
Text string can be an input to a program.
Program can be an input to a program.
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

\[\text{HALT}(P, I) \]
- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)

Program is a text string.
Text string can be an input to a program.
Program can be an input to a program.
Implementing HALT.

HALT (P, I)
P - program
I - input.
Determines if P(I) (P run on I) halts or loops forever.
Run P on I and check!
How long do you wait?
Something about infinity here, maybe?
Implementing HALT.

$HALT(P, I)$
Implementing HALT.

\[\text{HALT}(P, I) \]
\[P - \text{program} \]
Implementing HALT.

\[\text{HALT}(P, I) \]
- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) halts or loops forever. Run \(P \) on \(I \) and check!

Something about infinity here, maybe?
Implementing HALT.

\[HALT(P, I) \]
- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.
Implementing HALT.

$HALT(P, I)$

P - program

I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Run P on I and check!
Implementing HALT.

$HALT(P, I)$

P - program
I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.
Run P on I and check!
How long do you wait?
Implementing HALT.

\[\text{HALT}(P, I) \]
\[P - \text{ program} \]
\[I - \text{ input}. \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Run \(P \) on \(I \) and check!

How long do you wait?

Something about infinity here, maybe?
Halt does not exist.
Halt does not exist.

\[\text{HALT}(P, I) \]
Halt does not exist.

\[\text{HALT}(P, I) \]
\[P \text{ - program} \]
Halt does not exist.

\[\text{HALT}(P, I) \]
- \(P \) - program
- \(I \) - input.
Halt does not exist.

\[\text{HALT}(P, I) \]

- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.
Halt does not exist.

\[\text{HALT}(P, I) \]
\[P \text{ - program} \]
\[I \text{ - input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.
Halt does not exist.

$HALT(P, I)$

P - program

I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes!
Halt does not exist.

\[HALT(P, I) \]
\[P \text{ - program} \]
\[I \text{ - input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No!
Halt does not exist.

\[\text{HALT}(P, I) \]
\[P - \text{program} \]
\[I - \text{input.} \]

Determines if \(P(I) \) \((P \text{ run on } I)\) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes!
Halt does not exist.

$\text{HALT}(P, I)$

P - program

I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No!

Halt does not exist.

\[HALT(P, I) \]
\[P \text{ - program} \]
\[I \text{ - input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No!
HALT does not exist.

\[HALT(P, I) \]

- **P** - program
- **I** - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes!
Halt does not exist.

\[HALT(P, I) \]

\begin{itemize}
 \item \textit{P} - program
 \item \textit{I} - input.
\end{itemize}

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No!
Halt does not exist.

\[HALT(P, I) \]
- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program \(HALT \).

Proof: Yes! No! Yes! No! No! Yes! No! Yes!
Halt does not exist.

\[HALT(P, I) \]

- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..
Halt does not exist.

\[\text{HALT}(P, I) \]
- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..
Halt does not exist.

\[\text{HALT}(P, I) \]
\[P \text{ - program} \]
\[I \text{ - input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

What is he talking about?
HALT does not exist.

\[\text{HALT}(P, I) \]
\[P - \text{program} \]
\[I - \text{input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

What is he talking about?
(A) He is confused.
Halt does not exist.

\[\text{HALT}(P, I) \]
\[P - \text{program} \]
\[I - \text{input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! No! ..

What is he talking about?
(A) He is confused.
(B) Fermat’s Theorem.
Halt does not exist.

\[\text{HALT}(P, I) \]

\(P \) - program
\(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

What is he talking about?

(A) He is confused.
(B) Fermat’s Theorem.
(C) Diagonalization.
Halt does not exist.

\[\text{HALT}(P, I) \]
- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program \(\text{HALT} \).

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

What is he talking about?

(A) He is confused.
(B) Fermat’s Theorem.
(C) Diagonalization.
(D) Professor is just strange.
Halt does not exist.

\[\text{HALT}(P, I)\]

- \(P\) - program
- \(I\) - input.

Determines if \(P(I)\) (\(P\) run on \(I\)) halts or loops forever.

Theorem: There is no program \(\text{HALT}\).

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

What is he talking about?
- (A) He is confused.
- (B) Fermat's Theorem.
- (C) Diagonalization.
- (D) Professor is just strange.

(C).
Halt does not exist.

HALT(P, I)
 P - program
 I - input.

Determines if P(I) (P run on I) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

What is he talking about?
 (A) He is confused.
 (B) Fermat’s Theorem.
 (C) Diagonalization.
 (D) Professor is just strange.

(C). Maybe (D).
Halt and Turing.

Proof:

Assume there is a program $\text{HALT}(\cdot, \cdot)$. Turing($P$)

1. If $\text{HALT}(P, P) =$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.

There is text that "is" the program HALT.

There is text that is the program Turing.

Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts \Rightarrow then $\text{HALTS}(\text{Turing}, \text{Turing}) =$ halts \Rightarrow Turing(Turing) loops forever.

Turing(Turing) loops forever \Rightarrow then $\text{HALTS}(\text{Turing}, \text{Turing}) \neq$ halts \Rightarrow Turing(Turing) halts.

Contradiction.

Program HALT does not exist!
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Does $Turing(Turing)$ halt?

- $Turing(Turing)$ halts \implies then $HALT(Turing, Turing) = \text{halts}$ \implies $Turing(Turing)$ loops forever.
- $Turing(Turing)$ loops forever \implies then $HALT(Turing, Turing) \neq \text{halts}$ \implies $Turing(Turing)$ halts.

Contradiction.

Program $HALT$ does not exist!
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

$Turing(P)$
Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)
1. If $HALT(P,P) =$ “halts”, then go into an infinite loop.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

$Turing(P)$
1. If $HALT(P, P) =$ “halts”, then go into an infinite loop.
2. Otherwise, halt immediately.
Halt and Turing.

Proof: Assume there is a program \(HALT(\cdot, \cdot) \).

\(\text{Turing(P)} \)

1. If \(HALT(P,P) = \text{"halts"} \), then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

$Turing(P)$
1. If $HALT(P,P) =$“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
Proof: Assume there is a program \(HALT(\cdot,\cdot) \).

Turing(P)
1. If \(HALT(P,P) = \text{"halts"} \), then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)
1. If $HALT(P, P) =$ “halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
There is text that is the program Turing.
Can run Turing on Turing!
Halt and Turing.

Proof: Assume there is a program \(\text{HALT}(\cdot, \cdot) \).

\text{Turing}(P)
1. If \(\text{HALT}(P, P) = \text{"halts"} \), then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program \(\text{HALT} \).
There is text that “is” the program \(\text{HALT} \).
There is text that is the program \(\text{Turing} \).
Can run \(\text{Turing} \) on \(\text{Turing} \)!

Does \(\text{Turing}(\text{Turing}) \) halt?
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) = \text{"halts"}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does $Turing(Turing)$ halt?

$Turing(Turing)$ halts
Halt and Turing.

Proof: Assume there is a program \(HALT(\cdot, \cdot) \).

\[
\text{Turing}(P)
\begin{align*}
1. & \quad \text{If } HALT(P, P) = \text{"halts"}, \text{ then go into an infinite loop.} \\
2. & \quad \text{Otherwise, halt immediately.}
\end{align*}
\]

Assumption: there is a program HALT. There is text that “is” the program HALT. There is text that is the program Turing. Can run Turing on Turing!

Does \(\text{Turing(Turing)} \) halt?

\[
\text{Turing(Turing) halts} \quad \implies \quad \text{then HALTS(Turing, Turing) = halts}
\]
Halt and Turing.

Proof: Assume there is a program \(HALT(\cdot, \cdot) \).

\(\text{Turing}(P) \)
1. If \(HALT(P, P) = \text{"halts"} \), then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program \(HALT \).
There is text that “is” the program \(HALT \).
There is text that is the program \(Turing \).
Can run \(Turing \) on \(Turing \)!

Does \(Turing(Turing) \) halt?

\(Turing(Turing) \) halts
\[\Rightarrow \text{then } HALTS(Turing, Turing) = \text{halts} \]
\[\Rightarrow Turing(Turing) \text{ loops forever.} \]
Halt and Turing.

Proof: Assume there is a program \(HALT(\cdot,\cdot) \).

Turing(P)
1. If \(HALT(P,P) = \text{"halts"} \), then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does **Turing(Turing)** halt?

Turing(Turing) halts
\[\implies \text{then } HALTS(Turing, Turing) = \text{halts} \]
\[\implies \text{Turing(Turing) loops forever.} \]

Turing(Turing) loops forever
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

$Turing(P)$
1. If $HALT(P, P) \equiv \text{"halts"}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
There is text that is the program $Turing$.
Can run $Turing$ on $Turing$!

Does $Turing(Turing)$ halt?

$Turing(Turing)$ halts
\[\implies \text{then } HALTS(Turing, Turing) = \text{halts} \]
\[\implies \text{Turing}(Turing) \text{ loops forever.} \]

$Turing(Turing)$ loops forever
\[\implies \text{then } HALTS(Turing, Turing) \neq \text{halts} \]
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) = \text{"halts"}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
\implies then $HALTS(Turing, Turing) = \text{halts}$
\implies Turing(Turing) loops forever.

Turing(Turing) loops forever
\implies then $HALTS(Turing, Turing) \neq \text{halts}$
\implies Turing(Turing) halts.
Halt and Turing.

Proof: Assume there is a program \(HALT(\cdot, \cdot)\).

Turing(P)
1. If \(HALT(P, P) = \text{"halts"}\), then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program \(HALT\).
There is text that “is” the program \(HALT\).
There is text that is the program \(Turing\).
Can run Turing on Turing!

Does \(Turing(Turing)\) halt?

\[Turing(Turing) \text{ halts} \implies \text{HALTS(Turing, Turing) }= \text{halts}\]
\[\implies Turing(Turing) \text{ loops forever.}\]

\[Turing(Turing) \text{ loops forever} \implies \text{HALTS(Turing, Turing) }\neq \text{halts}\]
\[\implies Turing(Turing) \text{ halts.}\]

Contradiction.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

$\text{Turing}(P)$
1. If $HALT(P, P) =$ “halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does $\text{Turing}(\text{Turing})$ halt?

$\text{Turing}(\text{Turing})$ halts
\implies then $\text{HALTS}(\text{Turing}, \text{Turing}) = \text{halts}$
\implies $\text{Turing}(\text{Turing})$ loops forever.

$\text{Turing}(\text{Turing})$ loops forever
\implies then $\text{HALTS}(\text{Turing}, \text{Turing}) \neq \text{halts}$
\implies $\text{Turing}(\text{Turing})$ halts.

Contradiction. Program HALT does not exist!
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)
1. If $HALT(P, P) =$ “halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
\implies then HALTS(Turing, Turing) $= \text{halts}$
\implies Turing(Turing) loops forever.

Turing(Turing) loops forever
\implies then HALTS(Turing, Turing) $\neq \text{halts}$
\implies Turing(Turing) halts.

Contradiction. Program HALT does not exist!
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) =$“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
\implies then HALTS(Turing, Turing) = halts
\implies Turing(Turing) loops forever.

Turing(Turing) loops forever
\implies then HALTS(Turing, Turing) \neq halts
\implies Turing(Turing) halts.

Contradiction. Program HALT does not exist!

Questions?
Another view of proof: diagonalization.

Any program is a fixed length string.
Another view of proof: diagonalization.

Any program is a fixed length string. Fixed length strings are enumerable.
Another view of proof: diagonalization.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.
Another view of proof: diagonalization.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>P_2</td>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>P_3</td>
<td>L</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>P_2</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_3</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Halt - diagonal.
Another view of proof: diagonalization.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>P_2</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_3</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Halt - diagonal.
Turing - is **not** Halt.
Another view of proof: diagonalization.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>P_2</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_3</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
</tbody>
</table>

...

Halt - diagonal.

Turing - is not Halt.

and is different from every P_i on the diagonal.
Another view of proof: diagonalization.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>P_2</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_3</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Halt - diagonal.
Turing - is not Halt.
and is different from every P_i on the diagonal.
Turing is not on list.
Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

\[
\begin{array}{c|cccc}
 & P_1 & P_2 & P_3 & \ldots \\
\hline
P_1 & H & H & L & \ldots \\
P_2 & L & L & H & \ldots \\
P_3 & L & H & H & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
\end{array}
\]

Halt - diagonal.
Turing - is not Halt.
and is different from every \(P_i \) on the diagonal.
Turing is not on list. Turing is not a program.
Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>P_2</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_3</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Halt - diagonal.
Turing - is **not** Halt.
and is different from every P_i on the diagonal.
Turing is not on list. Turing is not a program.
Turing can be constructed from Halt.
Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>P_2</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_3</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Halt - diagonal.
Turing - is not Halt.
and is different from every P_i on the diagonal.
Turing is not on list. Turing is not a program.
Turing can be constructed from Halt.
Halt does not exist!
Another view of proof: diagonalization.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>P_2</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_3</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Halt - diagonal. Turing - is not Halt. and is different from every P_i on the diagonal. Turing is not on list. Turing is not a program. Turing can be constructed from Halt. Halt does not exist!
Proof play by play.

Assumed $\text{HALT}(P, I)$ existed.
Proof play by play.

Assumed $\text{HALT}(P, I)$ existed.

What is P?
Proof play by play.

Assumed \(\text{HALT}(P, I) \) existed.

What is \(P \)? Text.
Proof play by play.

Assumed \(\text{HALT}(P,I) \) existed.

What is \(P \)? Text.
What is \(I \)?
Proof play by play.

Assumed \(\text{HALT}(P, I) \) existed.

What is \(P \)? Text.
What is \(I \)? Text.
Proof play by play.

Assumed $\text{HALT}(P, I)$ existed.

What is P? Text.
What is I? Text.
Proof play by play.

Assumed $\text{HALT}(P, I)$ existed.

What is P? Text.
What is I? Text.

What does it mean to have a program $\text{HALT}(P, I)$.
Proof play by play.

Assumed $\text{HALT}(P, I)$ existed.

What is P? Text.
What is I? Text.

What does it mean to have a program $\text{HALT}(P, I)$.
You have Text that is the program $\text{HALT}(P, I)$.
Proof play by play.

Assumed \(\text{HALT}(P, I) \) existed.

What is \(P \)? Text.
What is \(I \)? Text.

What does it mean to have a program \(\text{HALT}(P, I) \).
You have \(Text \) that is the program \(\text{HALT}(P, I) \).
Proof play by play.

Assumed $\text{HALT}(P, I)$ existed.

What is P? Text.
What is I? Text.

What does it mean to have a program $\text{HALT}(P, I)$.
 You have Text that is the program $\text{HALT}(P, I)$.

Have ___ that is the program TURING.
Proof play by play.

Assumed $\text{HALT}(P, I)$ existed.

What is P? Text.
What is I? Text.

What does it mean to have a program $\text{HALT}(P, I)$.
You have Text that is the program $\text{HALT}(P, I)$.

Have Text that is the program TURING.
Proof play by play.

Assumed \(\text{HALT}(P, I) \) existed.

What is \(P \)? Text.
What is \(I \)? Text.

What does it mean to have a program \(\text{HALT}(P, I) \).
 You have \text{Text} that is the program \(\text{HALT}(P, I) \).

Have \text{Text} that is the program \text{TURING}.
Here it is!!
Proof play by play.

Assumed $\text{HALT}(P, I)$ existed.

What is P? Text.
What is I? Text.

What does it mean to have a program $\text{HALT}(P, I)$.

You have Text that is the program $\text{HALT}(P, I)$.

Have Text that is the program TURING.
Here it is!!

$\text{Turing}(P)$
Proof play by play.

Assumed $\text{HALT}(P, I)$ existed.

What is P? Text.
What is I? Text.

What does it mean to have a program $\text{HALT}(P, I)$.
You have Text that is the program $\text{HALT}(P, I)$.

Have Text that is the program TURING.
Here it is!!

$\text{Turing}(P)$
1. If $\text{HALT}(P, P) =$“halts”, then go into an infinite loop.
Proof play by play.

Assumed $\text{HALT}(P, I)$ existed.

What is P? Text.
What is I? Text.

What does it mean to have a program $\text{HALT}(P, I)$.

You have Text that is the program $\text{HALT}(P, I)$.

Have Text that is the program TURING.
Here it is!!

$\text{Turing}(P)$
1. If $\text{HALT}(P, P) = \text{"halts"}$, then go into an infinite loop.
2. Otherwise, halt immediately.
Proof play by play.

Assumed HALT\((P,I)\) existed.

What is \(P\)? Text.
What is \(I\)? Text.

What does it mean to have a program HALT\((P,I)\).

You have Text that is the program HALT\((P,I)\).

Have Text that is the program TURING.
Here it is!!

Turing\((P)\)

1. If HALT\((P,P)\) =“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Turing “diagonalizes” on list of program.
Proof play by play.

Assumed $\text{HALT}(P, I)$ existed.

What is P? Text.
What is I? Text.

What does it mean to have a program $\text{HALT}(P, I)$.

You have Text that is the program $\text{HALT}(P, I)$.

Have Text that is the program TURING.
Here it is!!

$\text{Turing}(P)$

1. If $\text{HALT}(P,P) =$“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Turing “diagonalizes” on list of program.
Proof play by play.

Assumed $\text{HALT}(P, I)$ existed.

What is P? Text.
What is I? Text.

What does it mean to have a program $\text{HALT}(P, I)$.
You have Text that is the program $\text{HALT}(P, I)$.

Have Text that is the program TURING. Here it is!!

$\text{Turing}(P)$
1. If $\text{HALT}(P, P) =$“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Turing “diagonalizes” on list of program.
It is not a program!!!!
Proof play by play.

Assumed \(\text{HALT}(P, I) \) existed.

What is \(P \)? Text.
What is \(I \)? Text.

What does it mean to have a program \(\text{HALT}(P, I) \)?

You have Text that is the program \(\text{HALT}(P, I) \).

Have Text that is the program TURING. Here it is!!

\text{Turing}(P)

1. If \(\text{HALT}(P, P) = \text{“halts”} \), then go into an infinite loop.
 2. Otherwise, halt immediately.

Turing “diagonalizes” on list of program.
It is not a program!!!!

\(\implies \) HALT is not a program.
Proof play by play.

Assumed $\text{HALT}(P, I)$ existed.

What is P? Text.
What is I? Text.

What does it mean to have a program $\text{HALT}(P, I)$?
You have Text that is the program $\text{HALT}(P, I)$.

Have Text that is the program TURING.
Here it is!!

$\text{Turing}(P)$
1. If $\text{HALT}(P,P) =$“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Turing “diagonalizes” on list of program.
It is not a program!!!!
\implies HALT is not a program.

Questions?
We are so smart!

Wow, that was easy!
We are so smart!

Wow, that was easy!
We should be famous!
No computers for Turing!

In Turing’s time.
No computers for Turing!

In Turing’s time.
No computers.
No computers for Turing!

In Turing’s time.
No computers.
Adding machines.
No computers for Turing!

In Turing’s time.
No computers.
Adding machines.
e.g., Babbage (from table of logarithms) 1812.
No computers for Turing!

In Turing’s time.
No computers.
Adding machines.
e.g., Babbage (from table of logarithms) 1812.
Concept of program as data wasn’t really there.
Turing machine.

Turing machine.

– an (infinite) tape with characters
– be in a state, and read a character
– move left, right, and/or write a character.

Universal Turing machine
– an interpreter program for a Turing machine
– where the tape could be a description of a ...

Turing: AI, self modifying code, learning...
A Turing machine.
– an (infinite) tape with characters
Turing machine.

A Turing machine.
– an (infinite) tape with characters
– be in a state, and read a character

Turing: AI, self modifying code, learning...
A Turing machine.\n– an (infinite) tape with characters
– be in a state, and read a character
– move left, right, and/or write a character.
Turing machine.

A Turing machine.
– an (infinite) tape with characters
– be in a state, and read a character
– move left, right, and/or write a character.

Universal Turing machine
A Turing machine.
– an (infinite) tape with characters
– be in a state, and read a character
– move left, right, and/or write a character.

Universal Turing machine
– an interpreter program for a Turing machine
A Turing machine.
– an (infinite) tape with characters
– be in a state, and read a character
– move left, right, and/or write a character.

Universal Turing machine
– an interpreter program for a Turing machine
– where the tape could be a description of a ...
Turing machine.

A Turing machine.
 – an (infinite) tape with characters
 – be in a state, and read a character
 – move left, right, and/or write a character.

Universal Turing machine
 – an interpreter program for a Turing machine
 – where the tape could be a description of a ... Turing machine!
A Turing machine.
- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine
- an interpreter program for a Turing machine
- where the tape could be a description of a ... Turing machine!

Now that’s a computer!
A Turing machine.
– an (infinite) tape with characters
– be in a state, and read a character
– move left, right, and/or write a character.

Universal Turing machine
– an interpreter program for a Turing machine
– where the tape could be a description of a ... Turing machine!

Now that’s a computer!

Turing: AI,
A Turing machine.
– an (infinite) tape with characters
– be in a state, and read a character
– move left, right, and/or write a character.

Universal Turing machine
– an interpreter program for a Turing machine
– where the tape could be a description of a ... Turing machine!

Now that’s a computer!

Turing: AI, self modifying code,
A Turing machine.
– an (infinite) tape with characters
– be in a state, and read a character
– move left, right, and/or write a character.

Universal Turing machine
– an interpreter program for a Turing machine
– where the tape could be a description of a ... Turing machine!

Now that’s a computer!

Turing: AI, self modifying code, learning...
Turing and computing.

Just a mathematician?
Turing and computing.

Just a mathematician?

“Wrote” a chess program.
Turing and computing.

Just a mathematician?

“Wrote” a chess program.

Simulated the program by hand to play chess.
Just a mathematician?

“Wrote” a chess program.

Simulated the program by hand to play chess.

It won!
Turing and computing.

Just a mathematician?
“Wrote” a chess program.
Simulated the program by hand to play chess.
It won! Once anyway.
Just a mathematician?

“Wrote” a chess program.
Simulated the program by hand to play chess.
It won! Once anyway.
Involved with computing labs through the 40s.
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is...

Gödel: Incompleteness theorem. Any formal system either is inconsistent or incomplete.
Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.
Along the way: "built" computers out of arithmetic.
Showed that every mathematical statement corresponds to.... a natural number!

Today: Programs can be written in ascii.
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part.
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s λ!
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme’s lambda is calculus’s λ!

Programming languages!
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)

Used \(\lambda \) calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s \(\lambda \)!

Programming languages! javascript, ruby, python....
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.) Used λ calculus....which is... Lisp (Scheme)!!! .. functional part. Scheme’s lambda is calculus’s λ!
Programming languages! javascript, ruby, python.... Gödel: Incompleteness theorem.
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.) Used λ calculus....which is... Lisp (Scheme)!!! .. functional part. Scheme’s lambda is calculus’s λ!

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

 Any formal system either is inconsistent or incomplete.
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s λ!

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.
Inconsistent: A false sentence can be proven.
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s λ!

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

 Any formal system either is inconsistent or incomplete.
 Inconsistent: A false sentence can be proven.
 Incomplete: There is no proof for some sentence in the system.
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s λ!

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

 Any formal system either is inconsistent or incomplete.
 Inconsistent: A false sentence can be proven.
 Incomplete: There is no proof for some sentence in the system.

Along the way: “built” computers out of arithmetic.
Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s λ!
Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.
Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.

Along the way: “built” computers out of arithmetic.
Showed that every mathematical statement corresponds to
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s λ!

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.
 Inconsistent: A false sentence can be proven.
 Incomplete: There is no proof for some sentence in the system.

Along the way: “built” computers out of arithmetic.
 Showed that every mathematical statement corresponds to a natural number!
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!! .. functional part. Scheme’s lambda is calculus’s λ!

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.
Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.

Along the way: “built” computers out of arithmetic.
Showed that every mathematical statement corresponds to a natural number! !
Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s λ!

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

 Any formal system either is inconsistent or incomplete.
 Inconsistent: A false sentence can be proven.
 Incomplete: There is no proof for some sentence in the system.

Along the way: “built” computers out of arithmetic.
 Showed that every mathematical statement corresponds to
 a natural number!!!
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s λ!

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.
Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.

Along the way: “built” computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number! ! ! !
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)

Used \(\lambda \) calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s \(\lambda \)!

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.
Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.

Along the way: “built” computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number!! ! ! ! Same cardinality as...
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s λ!
Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.
Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.

Along the way: “built” computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number! ! ! ! Same cardinality as...Text.
Church proved an equivalent theorem. (Previously.)

Used \(\lambda \) calculus...which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s \(\lambda \)!

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.
Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.

Along the way: “built” computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number! ! ! ! Same cardinality as...Text.

Today:
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s λ!

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.
Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.

Along the way: “built” computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number! ! ! ! Same cardinality as...Text.

Today: Programs can be written in
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s λ!

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.
Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.

Along the way: “built” computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number! ! ! ! Same cardinality as...Text.
Today:Programs can be written in ascii.
Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)

Used \(\lambda \) calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme’s lambda is calculus’s \(\lambda \)!

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.
 Inconsistent: A false sentence can be proven.
 Incomplete: There is no proof for some sentence in the system.

Along the way: “built” computers out of arithmetic.
 Showed that every mathematical statement corresponds to
 a natural number! ! ! ! Same cardinality as...Text.

Today: Programs can be written in ascii.
Computing on top of computing...

Computer, assembly code, programming language, browser, html, javascript..
Computing on top of computing...

Computer, assembly code, programming language, browser, html, javascript..

We can’t get enough of building more Turing machines.
Undecidable problems.

Does a program, P, print “Hello World”?

Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: $x^n + y^n = 1$?

Problem is undecidable. Be careful!

Is there an integer solution to $x^n + y^n = 1$? (Diophantine equation.) The answer is yes or no.

This “problem” is not undecidable. Undecidability for Diophantine set of equations \Rightarrow no program can take any set of integer equations and always correctly output whether it has an integer solution.
Undecidable problems.

Does a program, P, print “Hello World”? How?

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: $x^n + y^n = 1$? Problem is undecidable.

Be careful! Is there an integer solution to $x^n + y^n = 1$? (Diophantine equation.) The answer is yes or no. This “problem” is not undecidable. Undecidability for Diophantine set of equations \Rightarrow no program can take any set of integer equations and always correctly output whether it has an integer solution.
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P?
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P? Text!!!!!!
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P? Text!!!!!!
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P? Text!!!!!!

Find exit points and add statement: **Print** “Hello World.”
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P? Text!!!!!!

Find exit points and add statement: **Print** “Hello World.”
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P? Text!!!!!!

Find exit points and add statement: \textbf{Print} “Hello World.”

Can a set of notched tiles tile the infinite plane?
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P? Text!!!!!!

Find exit points and add statement: \textbf{Print} “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P? Text!!!!!!

Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P? Text!!!!!!

Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Does a program, P, print “Hello World”? How? What is P? Text!!!!!!

Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: “$x^n + y^n = 1$?”
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P? Text!!!!!!

Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: “$x^n + y^n = 1$?” Problem is undecidable.
Undecidable problems.

Does a program, P, print “Hello World”?
How? What is P? Text!!!!!!

Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: “$x^n + y^n = 1$?”
Problem is undecidable.

Be careful!
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P? Text!!!!!!

Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: “$x^n + y^n = 1$?” Problem is undecidable.

Be careful!
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P? Text!!!!!!

Find exit points and add statement: \textbf{Print} “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: “$x^n + y^n = 1$?” Problem is undecidable.

Be careful!

Is there an integer solution to $x^n + y^n = 1$?
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P? Text!!!!!!

Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: “$x^n + y^n = 1?$” Problem is undecidable.

Be careful!

Is there an integer solution to $x^n + y^n = 1$? (Diophantine equation.)
Undecidable problems.

Does a program, P, print “Hello World”?
How? What is P? Text!!!!!!!

Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: “$x^n + y^n = 1$?”
Problem is undecidable.

Be careful!

Is there an integer solution to $x^n + y^n = 1$?
(Diophantine equation.)

The answer is yes or no.
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P? Text!!!!!!

Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: “$x^n + y^n = 1$?” Problem is undecidable.

Be careful!

Is there an integer solution to $x^n + y^n = 1$? (Diophantine equation.) The answer is yes or no. This “problem” is not undecidable.
Undecidable problems.

Does a program, P, print “Hello World”? How? What is P? Text!!!!!!

Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: “$x^n + y^n = 1$?” Problem is undecidable.

Be careful!

Is there an integer solution to $x^n + y^n = 1$? (Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
Undecidable problems.

Does a program, \(P \), print “Hello World”? How? What is \(P \)? Text!!!!!!

Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: “ \(x^n + y^n = 1 \)?” Problem is undecidable.

Be careful!

Is there an integer solution to \(x^n + y^n = 1 \)? (Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
\(\rightarrow \) no program can take any set of integer equations and
Undecidable problems.

Does a program, \(P \), print “Hello World”? How? What is \(P \)? Text!!!!!!

Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: “\(x^n + y^n = 1? \)” Problem is undecidable.

Be careful!

Is there an integer solution to \(x^n + y^n = 1? \)
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations \(\implies \) no program can take any set of integer equations and always correctly output whether it has an integer solution.
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis:

- Person: embryo is blob. Legs, arms, head.... How?
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number.
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn’t really work.
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).

- Seminal paper in numerical analysis: Condition number. Math 54 doesn’t really work. Almost dependent matrices.
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn’t really work. Almost dependent matrices.
- Seminal paper in mathematical biology.
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn’t really work. Almost dependent matrices.
- Seminal paper in mathematical biology. Person:
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn’t really work. Almost dependent matrices.
- Seminal paper in mathematical biology. Person: embryo is blob.
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn’t really work. Almost dependent matrices.
- Seminal paper in mathematical biology. Person: embryo is blob. Legs,
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn’t really work. Almost dependent matrices.
- Seminal paper in mathematical biology. Person: embryo is blob. Legs, arms,
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number.
 Math 54 doesn’t really work.
 Almost dependent matrices.
- Seminal paper in mathematical biology.
 Person: embryo is blob. Legs, arms, head....
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn’t really work.
 Almost dependent matrices.
- Seminal paper in mathematical biology.
 Person: embryo is blob. Legs, arms, head.... How?
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn’t really work. Almost dependent matrices.
- Seminal paper in mathematical biology. Person: embryo is blob. Legs, arms, head.... How? Fly:
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn’t really work. Almost dependent matrices.
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn’t really work. Almost dependent matrices.
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).

- Seminal paper in numerical analysis: Condition number. Math 54 doesn’t really work.
 Almost dependent matrices.

- Seminal paper in mathematical biology.
 Person: embryo is blob. Legs, arms, head.... How?
 Fly: blob. Torso becomes striped.
 Developed chemical reaction-diffusion networks that break symmetry.
More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).

- Seminal paper in numerical analysis: Condition number. Math 54 doesn’t really work. Almost dependent matrices.

- Imitation Game.
Turing: personal.

Tragic ending...
Turing: personal.

Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
Turing: personal.

Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;

(A bite from the apple....) accident?

Turing: personal.

Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- lost security clearance...

(A bite from the apple....) accident?

Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- lost security clearance...
- suffered from depression;
Turing: personal.

Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- Given choice of prison or (quackish) injections to eliminate sex drive;
- Took injections.
- Lost security clearance...
- Suffered from depression;
- (Possibly) suicided with cyanide at age 42 in 1954.
Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- lost security clearance...
- suffered from depression;
- (possibly) suicided with cyanide at age 42 in 1954.
 (A bite from the apple....)
Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- lost security clearance...
- suffered from depression;
- (possibly) suicided with cyanide at age 42 in 1954. (A bite from the apple....) accident?

(A British Government apologized (2009) and pardoned (2013).)
Turing: personal.

Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- lost security clearance...
- suffered from depression;
- (possibly) suicided with cyanide at age 42 in 1954. (A bite from the apple....) accident?
This statement is a lie.
This statement is a lie.

Neither true nor false!
This statement is a lie. Neither true nor false!

Every person who doesn’t shave themselves is shaved by the barber.
This statement is a lie. **Neither true nor false!**

Every person who doesn’t shave themselves is shaved by the barber.

Who shaves the barber?
This statement is a lie. **Neither true nor false!**

Every person who doesn’t shave themselves is shaved by the barber.

Who shaves the barber?

def Turing(P):
This statement is a lie. *Neither true nor false!*

Every person who doesn’t shave themselves is shaved by the barber.

 Who shaves the barber?

def Turing(P):
 if Halts(P,P): while(true): pass
 else:
 return
This statement is a lie. *Neither true nor false!*

Every person who doesn’t shave themselves is shaved by the barber.

Who shaves the barber?

def Turing(P):
 if Halts(P,P): while(true): pass
 else:
 return

...Text of Halt...
This statement is a lie. *Neither true nor false!*

Every person who doesn’t shave themselves is shaved by the barber.

 Who shaves the barber?

def Turing(P):
 if Halts(P,P): while(true): pass
 else:
 return

...Text of Halt...

Halt Program \Rightarrow Turing Program.
This statement is a lie. *Neither true nor false!*

Every person who doesn’t shave themselves is shaved by the barber.

Who shaves the barber?

def Turing(P):
 if Halts(P,P): while(true): pass
 else:
 return

...Text of Halt...

Halt Program \implies Turing Program. ($P \implies Q$)
This statement is a lie. Neither true nor false!

Every person who doesn’t shave themselves is shaved by the barber.
Who shaves the barber?

def Turing(P):
 if Halts(P,P): while(true): pass
 else:
 return

...Text of Halt...

Halt Program \implies Turing Program. ($P \implies Q$)
This statement is a lie. *Neither true nor false!*

Every person who doesn’t shave themselves is shaved by the barber.

Who shaves the barber?

def Turing(P):
 if Halts(P, P): while(true): pass
 else:
 return

...Text of Halt...

Halt Program \implies Turing Program. ($P \implies Q$)

Turing(“Turing”)?
This statement is a lie. *Neither true nor false!*

Every person who doesn’t shave themselves is shaved by the barber.

Who shaves the barber?

def Turing(P):
 if Halts(P,P): while(true): pass
 else:
 return

...Text of Halt...

Halt Program \implies Turing Program. ($P \implies Q$)

Turing(“Turing”)? Neither halts nor loops!
This statement is a lie. Neither true nor false!

Every person who doesn’t shave themselves is shaved by the barber.

Who shaves the barber?

def Turing(P):
 if Halts(P,P): while(true): pass
 else:
 return

...Text of Halt...

Halt Program \implies Turing Program. ($P \implies Q$)

Turing(“Turing”)? Neither halts nor loops! \implies No Turing program.
This statement is a lie. *Neither true nor false!*

Every person who doesn’t shave themselves is shaved by the barber.

 Who shaves the barber?

def Turing(P):
 if Halts(P,P): while(true): pass
 else:
 return

...Text of Halt...

Halt Program \implies Turing Program. ($P \implies Q$)

Turing(“Turing”)? Neither halts nor loops! \implies No Turing program.
This statement is a lie. *Neither true nor false!*

Every person who doesn’t shave themselves is shaved by the barber.

Who shaves the barber?

```python
def Turing(P):
    if Halts(P, P): while(true): pass
    else:
        return

...Text of Halt...
```

Halt Program \implies Turing Program. $(P \implies Q)$

Turing("Turing")? Neither halts nor loops! \implies No Turing program.

No Turing Program
This statement is a lie. *Neither true nor false!*

Every person who doesn’t shave themselves is shaved by the barber.

 Who shaves the barber?

```python
def Turing(P):
    if Halts(P,P): while(true): pass
    else:
        return

...Text of Halt...
```

Halt Program \implies Turing Program. ($P \implies Q$)

Turing(“Turing”)? Neither halts nor loops! \implies No Turing program.

No Turing Program \implies
This statement is a lie. *Neither true nor false!*

Every person who doesn’t shave themselves is shaved by the barber.

Who shaves the barber?

def Turing(P):
 if Halts(P,P): while(true): pass
 else:
 return

...Text of Halt...

Halt Program \implies Turing Program. $(P \implies Q)$

Turing(“Turing”)? Neither halts nor loops! \implies No Turing program.

No Turing Program \implies No halt program.
This statement is a lie. **Neither true nor false!**

Every person who doesn’t shave themselves is shaved by the barber.

Who shaves the barber?

```python
def Turing(P):
    if Halts(P,P): while(true): pass
    else:
        return

...Text of Halt...
```

$$
\text{Halt Program} \implies \text{Turing Program. (} P \implies Q)$$

Turing(“Turing”)? Neither halts nor loops! $$\implies$$ No Turing program.

$$
\text{No Turing Program} \implies \text{No halt program. (} \neg Q \implies \neg P)$$
```
This statement is a lie. Neither true nor false!

Every person who doesn’t shave themselves is shaved by the barber.

Who shaves the barber?

def Turing(P):
    if Halts(P,P): while(true): pass
    else:
        return

...Text of Halt...

Halt Program $\implies$ Turing Program. $(P \implies Q)$

Turing(“Turing”)? Neither halts nor loops! $\implies$ No Turing program.

No Turing Program $\implies$ No halt program. $(\neg Q \implies \neg P)$

Program is text, so we can pass it to itself,
This statement is a lie. *Neither true nor false!*

Every person who doesn’t shave themselves is shaved by the barber.

*Who shaves the barber?*

def Turing(P):
    if Halts(P,P): while(true): pass
    else:
        return

...Text of Halt...

Halt Program $\implies$ Turing Program. ($P \implies Q$)

Turing(“Turing”)? Neither halts nor loops! $\implies$ No Turing program.

No Turing Program $\implies$ No halt program. ($\neg Q \implies \neg P$)

Program is text, so we can pass it to itself, or refer to self.
Summary: decidability.

Computer Programs are an interesting thing.
Computer Programs are an interesting thing.  
Like Math.
Computer Programs are an interesting thing. 
Like Math. 
Formal Systems.
Computer Programs are an interesting thing. Like Math. Formal Systems.
Computer Programs are an interesting thing.
  Like Math.
  Formal Systems.

Computer Programs cannot completely “understand” computer programs.
Summary: decidability.

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs cannot completely “understand” computer programs.
Summary: decidability.

Computer Programs are an interesting thing.
   Like Math.
   Formal Systems.

Computer Programs cannot completely “understand” computer programs.

Computation is a lens for other action in the world.
What’s to come?
Probability

What’s to come? Probability.
Probability

What’s to come? Probability.

A bag contains:
What’s to come? Probability.

A bag contains:

- Red
- Blue
- Yellow
- Blue
- Red
- Red
- Blue
What’s to come? Probability.

A bag contains:

- 3 red balls
- 2 blue balls
- 1 yellow ball

What is the chance that a ball taken from the bag is blue?
What’s to come? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue.
What’s to come? Probability.

A bag contains:

![Bag with red, blue, and yellow balls](image)

What is the chance that a ball taken from the bag is blue? Count blue. Count total.
What’s to come? Probability.

A bag contains:

- Red
- Blue
- Yellow
- Blue
- Red
- Red
- Red
- Blue

What is the chance that a ball taken from the bag is blue?
What’s to come? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue?
For now:
What’s to come? Probability.

A bag contains:

- Red
- Blue
- Yellow
- Blue
- Red
- Red
- Red
- Blue

What is the chance that a ball taken from the bag is blue?


For now: Counting!
What’s to come? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue?
For now: Counting!
Later: Probability.