| 70: Discrete Math and Probability Theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Babak Ayazifar                                                                                                                                                                                                                                                         | Satish Rao                                                                                                                                                                                                                                                              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Programming + Microprocessors ≡ Superpower!</li> <li>What are your super powerful programs/processors doing? <ul> <li>Logic and Proofs!</li> <li>Induction ≡ Recursion.</li> </ul> </li> <li>What can computers do? <ul> <li>Work with discrete objects.</li> <li>Discrete Math ⇒ immense application.</li> </ul> </li> <li>Computers learn and interact with the world? <ul> <li>E.g. machine learning, data analysis, robotics,</li> <li>Probability!</li> </ul> </li> <li>See note 1, for more discussion.</li> </ul> | Call me "Babak".<br>(First vowel pronounced like "o" in Bob. Second syllable as in "back".)<br>Undergrad Caltech. Grad MIT.<br>First CS Teaching Mission. Yay!<br>Best contact: ayazifar@berkeley.edu<br>Does time in 517 Cory Hall. Make appointment before knocking. | 19th year at Berkeley.<br>PhD: Long time ago, far far away.<br>Research: Theory (Algorithms)<br>Taught: 70, 170, 174, 188, 270, 273, 294, 375,<br>Other: 1 College kid. One Cal Grad. And another College Grad.                                                         |  |  |
| Admin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wason's experiment:1                                                                                                                                                                                                                                                   | CS70: Lecture 1. Outline.                                                                                                                                                                                                                                               |  |  |
| Course Webpage: http://www.eecs70.org/<br>Explains policies, has office hours, homework, midterm dates, etc.<br>Two midterms, final.<br>midterm 1 before drop date.<br>midterm 2 late! After pass/no-pass deadline!<br>Questions ⇒ piazza:<br>piazza.com/berkeley/spring2018/cs70<br>Weekly Post.<br>It's weekly.<br>Read it!!!!<br>Announcements, logistics, critical advice.                                                                                                                                                    | Suppose we have four cards on a table: <ul> <li>1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.</li> <li>Card contains person's destination on one side, and mode of travel.</li> <li>Consider the theory:</li></ul>                                           | <ul> <li>Today: Note 1. Note 0 is background. Do read it.<br/>The language of proofs!</li> <li>1. Propositions.</li> <li>2. Propositional Forms.</li> <li>3. Implication.</li> <li>4. Truth Tables</li> <li>5. Quantifiers</li> <li>6. More De Morgan's Laws</li> </ul> |  |  |

| $\sqrt{2}$ is irrational<br>2+2 = 4<br>2+2 = 3<br>826th digit of pi is 4<br>Johnny Depp is a good actor<br>Any even > 2 is sum of 2 primes<br>4+5<br>x + x<br>Alice travelled to Chicago<br>I love you.                                                                                                                                                                                                       | Proposition<br>Proposition<br>Proposition<br>Proposition<br>Not Proposition.<br>Not a Proposition.<br>Not a Proposition.<br>Proposition.<br>Hmmm. | True<br>True<br>False<br>False<br>False<br>False<br>Its complicated? |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Again: "value" of a proposition is                                                                                                                                                                                                                                                                                                                                                                            | True or False                                                                                                                                     |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                   |                                                                      |
| Propositions:<br>P <sub>1</sub> - Person 1 rides the bus.                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                   |                                                                      |
| Propositions:                                                                                                                                                                                                                                                                                                                                                                                                 | n 3 or 4 ride the bus. C                                                                                                                          | Dr that                                                              |
| $P_1$ - Person 1 rides the bus.<br>$P_2$ - Person 2 rides the bus.<br><br>But we can't have either of the follo<br>or person 2 ride the bus and person<br>person 2 or person 3 ride the bus a                                                                                                                                                                                                                 | n 3 or 4 ride the bus. C<br>nd that either person 4                                                                                               | Dr that                                                              |
| Propositions:<br>$P_1$ - Person 1 rides the bus.<br>$P_2$ - Person 2 rides the bus.<br><br>But we can't have either of the follo<br>or person 2 ride the bus and person<br>person 2 or person 3 ride the bus a<br>bus or person 5 doesn't.<br>Propositional Form:                                                                                                                                             | a 3 or 4 ride the bus. C<br>nd that either person 4<br>a) $\land$ ( $P_4 \lor \neg P_5$ )))                                                       | Dr that                                                              |
| Propositions:<br>$P_1$ - Person 1 rides the bus.<br>$P_2$ - Person 2 rides the bus.<br><br>But we can't have either of the follo<br>or person 2 ride the bus and person<br>person 2 or person 3 ride the bus a<br>bus or person 5 doesn't.<br>Propositional Form:<br>$\neg(((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3))))$<br>Can person 3 ride the bus?                                       | a 3 or 4 ride the bus. C<br>nd that either person 4<br>a) $\land$ ( $P_4 \lor \neg P_5$ )))                                                       | Dr that                                                              |
| Propositions:<br>$P_1$ - Person 1 rides the bus.<br>$P_2$ - Person 2 rides the bus.<br><br>But we can't have either of the follo<br>or person 2 ride the bus and person<br>person 2 or person 3 ride the bus a<br>bus or person 5 doesn't.<br>Propositional Form:<br>$\neg(((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3))))$<br>Can person 3 ride the bus?<br>Can person 3 and person 4 ride the | a 3 or 4 ride the bus. C<br>nd that either person 4<br>a) $\land$ ( $P_4 \lor \neg P_5$ )))                                                       | Dr that                                                              |

```
Put propositional Forms.

Put propositions together to make another...

Conjunction ("and"): P \land Q

"P \land Q" is True when both P and Q are True . Else False .

Disjunction ("or"): P \lor Q

"P \lor Q" is True when at least one P or Q is True . Else False .

Negation ("not"): \neg P

"\neg P" is True when P is False . Else False .

Examples:

\neg "(2+2=4)" – a proposition that is ... False

"2+2=3" \land "2+2=4" – a proposition that is ... False

"2+2=3" \checkmark "2+2=4" – a proposition that is ... True
```

```
Truth Tables for Propositional Forms.
```

| Ρ | Q | $P \wedge Q$ | Ρ | Q | $P \lor Q$ |
|---|---|--------------|---|---|------------|
| Т | Т | Т            | Т | Т | Т          |
| Т | F | F            | Т | F | Т          |
| F | Т | F            | F | Т | Т          |
| F | F | F            | F | F | F          |

Notice:  $\land$  and  $\lor$  are commutative.

One use for truth tables: Logical Equivalence of propositional forms! Example:  $\neg (P \land Q)$  logically equivalent to  $\neg P \lor \neg Q$ 

...because both propositional forms have the same... Truth Table!

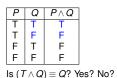
| Р | Q | $\neg (P \lor Q)$ | $\neg P \land \neg Q$ |
|---|---|-------------------|-----------------------|
| Т | Т | F                 | F                     |
| Т | F | F                 | F                     |
| F | Т | F                 | F                     |
| F | F | Т                 | Т                     |

### DeMorgan's Law's for Negation: distribute and flip!

 $\neg (P \land Q) \equiv \neg P \lor \neg Q \qquad \neg (P \lor Q) \equiv \neg P \land \neg Q$ 

# $P = \sqrt[4]{2} \text{ is rational}$ $Q = \sqrt[8]{26th digit of pi is 2}$ P is ...False Q is ...True $P \land Q \dots \text{ False}$ $P \lor Q \dots \text{ True}$ $\neg P \dots \text{ True}$ Quick Questions

Propositional Forms: quick check!





Yes! Look at rows in truth table for P = T. What is  $(F \land Q)$ ? F or False. What is  $(T \lor Q)$ ? T What is  $(F \lor Q)$ ? Q

### Distributive?

 $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)?$ Simplify:  $(T \land Q) \equiv Q, (F \land Q) \equiv F.$ Cases: P is True.  $LHS: T \land (Q \lor R) \equiv (Q \lor R).$   $RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).$  P is False.  $LHS: F \land (Q \lor R) \equiv F.$   $RHS: (F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F.$   $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)?$ Simplify:  $T \lor Q \equiv T, F \lor Q \equiv Q.$ Foil 1:  $(A \lor B) \land (C \lor D) \equiv (A \land C) \lor (A \land D) \lor (B \land C) \lor (B \land D)?$ Foil 2:  $(A \land B) \lor (C \land D) \equiv (A \lor C) \land (A \lor D) \land (B \lor C) \land (B \lor D)?$ 

# Implication and English.

### $P \Longrightarrow Q$

▶ If P, then Q.

 Q if P. Just reversing the order.

P only if Q. Remember if P is true then Q must be true. this suggests that P can only be true if Q is true. since if Q is false P must have been false.

 P is sufficient for Q.
 This means that proving P allows you to conclude that Q is true.

Q is necessary for P.
 For P to be true it is necessary that Q is true.
 Or if Q is false then we know that P is false.

# Implication.

 $P \Longrightarrow Q$  interpreted as

If P, then Q.

True Statements:  $P, P \implies Q$ . Conclude: Q is true.

### Examples:

Statement: If you stand in the rain, then you'll get wet. P = "you stand in the rain" Q = "you will get wet" Statement: "Stand in the rain" Can conclude: "you'll get wet."

Statement: If a right triangle has sidelengths  $a \le b \le c$ , then  $a^2 + b^2 = c^2$ .

P = "a right triangle has sidelengths  $a \le b \le c$ ", Q = " $a^2 + b^2 = c^2$ ".

# Truth Table: implication.

| [ | Ρ | Q | $P \Longrightarrow Q$ | Р | Q | $\neg P \lor Q$ |
|---|---|---|-----------------------|---|---|-----------------|
|   | Т | Т | Т                     | Т | Т | Т               |
|   | T | F | F                     | Т | F | F               |
|   | F | Т | Т                     | F | Т | Т               |
|   | F | F | Т                     | F | F | Т               |

 $\neg P \lor Q \equiv P \Longrightarrow Q.$ 

These two propositional forms are logically equivalent!

# Non-Consequences/consequences of Implication

The statement " $P \implies Q$ "

only is False if P is True and Q is False .

False implies nothing P False means *Q* can be True or False Anything implies true. *P* can be True or False when *Q* is True

If chemical plant pollutes river, fish die. If fish die, did chemical plant pollute river?

Not necessarily.

 $P \implies Q$  and Q are True does not mean P is True

Be careful!

Instead we have:

 $P \implies Q$  and P are True does mean Q is True .

The chemical plant pollutes river. Can we conclude fish die?

Some Fun: use propositional formulas to describe implication?  $((P \implies Q) \land P) \implies Q.$ 

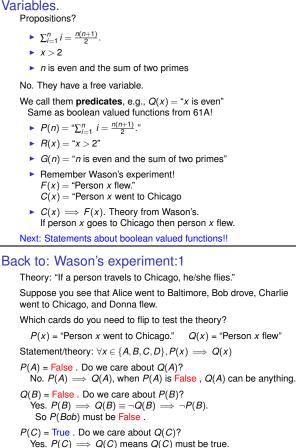
# Contrapositive, Converse

- Contrapositive of  $P \implies Q$  is  $\neg Q \implies \neg P$ .
  - If the plant pollutes, fish die.
  - If the fish don't die, the plant does not pollute. (contrapositive)
  - If you stand in the rain, you get wet.
  - If you did not stand in the rain, you did not get wet. (not contrapositive!) converse!
  - If you did not get wet, you did not stand in the rain. (contrapositive.)

Logically equivalent! Notation:  $\equiv$ .  $P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.$ 

- ► Converse of P ⇒ Q is Q ⇒ P. If fish die the plant pollutes. Not logically equivalent!
- ▶ **Definition:** If  $P \implies Q$  and  $Q \implies P$  is P if and only if Q or  $P \iff Q$ . (Logically Equivalent:  $\iff$ .)

# Variables.



Q(D) = True. Do we care about P(D)? No.  $P(D) \implies Q(D)$  holds whatever P(D) is when Q(D) is true.

Only have to turn over cards for Bob and Charlie.

# Quantifiers...

# There exists quantifier:

 $(\exists x \in S)(P(x))$  means "There exists an x in S where P(x) is true." For example:  $(\exists x \in \mathbb{N})(x = x^2)$ Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor ...$ " Much shorter to use a quantifier! For all quantifier:  $(\forall x \in S) (P(x))$ . means "For all x in S, P(x) is True." Examples: "Adding 1 makes a bigger number."  $(\forall x \in \mathbb{N}) (x+1 > x)$ "the square of a number is always non-negative"  $(\forall x \in \mathbb{N})(x^2 \ge 0)$ 

Wait! What is N?

# More for all quantifiers examples.

"doubling a number always makes it larger"

 $(\forall x \in N) (2x > x)$  False Consider x = 0

Can fix statement...

### $(\forall x \in N) (2x \ge x)$ True

Square of any natural number greater than 5 is greater than 25."

 $(\forall x \in N)(x > 5 \implies x^2 > 25).$ 

Idea alert: Restrict domain using implication.

Later we may omit universe if clear from context.

# Quantifiers: universes.

**Proposition:** "For all natural numbers  $n, \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ ." Proposition has universe: "the natural numbers". Universe examples include ...

- ▶ N = {0, 1, ...} (natural numbers).
- $\mathbb{Z} = \{..., -1, 0, ...\}$  (integers)
- $\blacktriangleright$   $\mathbb{Z}^+$  (positive integers)
- $\triangleright$   $\mathbb{R}$  (real numbers)
- Any set:  $S = \{Alice, Bob, Charlie, Donna\}$ .
- See note 0 for more!

### Quantifiers..not commutative.

▶ In English: "there is a natural number that is the square of every natural number".

 $(\exists y \in N) (\forall x \in N) (y = x^2)$  False

In English: "the square of every natural number is a natural number."

 $(\forall x \in N) (\exists y \in N) (y = x^2)$  True

# Quantifiers....negation...DeMorgan again.

Consider

 $\neg(\forall x \in S)(P(x)),$ 

English: there is an x in S where P(x) does not hold. That is,  $\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$ 

What we do in this course! We consider claims.

**Claim:**  $(\forall x) P(x)$  "For all inputs x the program works." For False, find x, where  $\neg P(x)$ . Counterexample. Bad input. Case that illustrates bug. For True : prove claim. Next lectures...

# Summary.

Propositions are statements that are true or false. Proprositional forms use  $\land, \lor, \neg$ . Propositional forms correspond to truth tables. Logical equivalence of forms means same truth tables. Implication:  $P \implies Q \iff \neg P \lor Q$ . Contrapositive:  $\neg Q \implies \neg P$ Converse:  $Q \implies \neg P$ Predicates: Statements with "free" variables. Quantifiers:  $\forall x \ P(x), \exists y \ Q(y)$ Now can state theorems! And disprove false ones! DeMorgans Laws: "Flip and Distribute negation"  $\neg (P \lor Q) \iff (\neg P \land \neg Q)$   $\neg \forall x \ P(x) \iff \exists x \ \neg P(x).$ Next Time: proofs!

# Negation of exists.

### Consider

 $\neg(\exists x \in S)(P(x))$ English: means that for all *x* in *S*, *P*(*x*) does not hold. That is,  $\neg(\exists x \in S)(P(x)) \iff \forall (x \in S) \neg P(x).$ 

# Which Theorem?

Theorem:  $(\forall n \in N) \neg (\exists a, b, c \in N) \ (n \ge 3 \implies a^n + b^n = c^n)$ Which Theorem? Fermat's Last Theorem! Remember Special Triangles: for n = 2, we have 3,4,5 and 5,7, 12 and ... 1637: Proof doesn't fit in the margins. 1993: Wiles ...(based in part on Ribet's Theorem) DeMorgan Restatement: Theorem:  $\neg (\exists n \in N) \ (\exists a, b, c \in N) \ (n \ge 3 \implies a^n + b^n = c^n)$