
CS 70 Discrete Mathematics and Probability Theory
Spring 2018 Satish Rao and Babak Ayazifar HW 5

Sundry
Before you start your homework, write down your team. Who else did you work with on this
homework? List names and email addresses. (In case of homework party, you can also just describe
the group.) How did you work on this homework? Working in groups of 3-5 will earn credit for
your "Sundry" grade.

Please copy the following statement and sign next to it:

I certify that all solutions are entirely in my words and that I have not looked at another student’s
solutions. I have credited all external sources in this write up.

1 Breaking RSA
(a) Eve is not convinced she needs to factor N = pq in order to break RSA. She argues: "All I need

to know is (p−1)(q−1)... then I can find d as the inverse of e mod (p−1)(q−1). This should
be easier than factoring N." Prove Eve wrong, by showing that if she knows (p− 1)(q− 1),
she can easily factor N (thus showing finding (p−1)(q−1) is at least as hard as factoring N).
Assume Eve has a friend Wolfram, who can easily return the roots of polynomials over R (this
is, in fact, easy).

(b) When working with RSA, it is not uncommon to use e = 3 in the public key. Suppose that
Alice has sent Bob, Carol, and Dorothy the same message indicating the time she is having
her birthday party. Eve, who is not invited, wants to decrypt the message and show up to the
party. Bob, Carol, and Dorothy have public keys (N1,e1),(N2,e2),(N3,e3) respectively, where
e1 = e2 = e3 = 3. Furthermore assume that N1,N2,N3 are all different. Alice has chosen a
number 0 ≤ x < min{N1,N2,N3} which indicates the time her party starts and has encoded
it via the three public keys and sent it to her three friends. Eve has been able to obtain the
three encoded messages. Prove that Eve can figure out x. First solve the problem when two of
N1,N2,N3 have a common factor. Then solve it when no two of them have a common factor.
Again, assume Eve is friends with Wolfram as above.

Hint: The concept behind this problem is the Chinese Remainder Theorem: Suppose n1, ...,nk

CS 70, Spring 2018, HW 5 1



are positive integers, that are pairwise co-prime. Then, for any given sequence of integers
a1, ...,ak, there exists an integer x solving the following system of simultaneous congruences:

x≡ a1 (mod n1)

x≡ a2 (mod n2)

...
x≡ ak (mod nk)

Furthermore, all solutions x of the system are congruent modulo the product, N = n1 · · ·nk.
Hence: x≡ y (mod ni) for 1≤ i≤ k ⇐⇒ x≡ y (mod N).

2 Squared RSA
(a) Prove the identity ap(p−1) ≡ 1 (mod p2), where a is relatively prime to p and p is prime.

(b) Now consider the RSA scheme: the public key is (N = p2q2,e) for primes p and q, with e
relatively prime to p(p− 1)q(q− 1). The private key is d = e−1 (mod p(p− 1)q(q− 1)).
Prove that the scheme is correct, i.e. xed ≡ x (mod N). You may assume that x is relatively
prime to both p and q.

(c) Continuing the previous part, prove that the scheme is unbreakable, i.e. your scheme is at least
as difficult to break as ordinary RSA.

3 Badly Chosen Public Key
Your friend would like to send you a message using the RSA public key N =(pq,e). Unfortunately,
your friend did not take CS 70, so your friend mistakenly chose e which is not relatively prime to
(p−1)(q−1). Your friend then sends you a message y = xe. In this problem we will investigate
if it is possible to recover the original message x. Throughout this problem, assume that you have
discovered an integer a which has the property that a(p−1)(q−1) ≡ 1 (mod N), and for any positive
integer k where 1≤ k < (p−1)(q−1), ak 6≡ 1 (mod N).

(a) Show that for any integer z which is relatively prime to N, z can be written as ak (mod N) for
some integer 0≤ k < (p−1)(q−1). [Hint: Show that 1,a,a2, . . . ,a(p−1)(q−1)−1 are all distinct
modulo N. Think of the proof for Fermat’s Little Theorem.]

(b) Show that if k is any integer such that ak ≡ 1 (mod N), then (p−1)(q−1) | k.

(c) Assume that y is relatively prime to N. By the first part, we can write y≡ a` (mod N) for some
` ∈ {0, . . . ,(p− 1)(q− 1)− 1}. Show that if k is an integer such that (p− 1)(q− 1) | ek− `,
then x̃ := ak satisfies x̃e ≡ y (mod N).

(d) Unfortunately the solution x̃ found in the previous part might not be the original solution x.
Show that if d := gcd(e,(p−1)(q−1))> 1, then there are exactly d distinct integers x1, . . . ,xd
which are all distinct modulo N such that xe

i = y, i = 1, . . . ,d. [Hint: You will probably find it
helpful to use a as a tool here.]
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4 Quantum Factoring
We’re pretty sure that classical computers can’t break RSA (because it is hard to factor large
numbers on them), but we know that quantum computers theoretically could. The fact that we will
prove in this question is a key part of Shor’s Algorithm, a quantum algorithm for factoring large
numbers quickly.

(a) Let N = pq, for primes p and q. Prove that, for all a ∈ N, there are only four possible values
for gcd(a,N).

(b) Again, let N = pq. Using part (a), prove that, if r2 = 1 mod N and r 6≡ ±1 (mod N) (i.e. r is
a "nontrivial square root of 1" mod N), then gcd(r−1,N) is one of the prime factors of N.
Hint: r2 = 1 mod N can be rewritten as r2−1 = 0 mod N or (r+1)(r−1) = 0 mod N.

5 Polynomial Short Answer
For each of these questions, please provide a brief justification or explanation unless otherwise
specified.

(a) Sanity checks (no justification needed):

(i) A degree d nonzero polynomial in R has at most roots.

(ii) A degree d nonzero polynomial in GF(p) has at most min( , p) roots.

(iii) d points determine an at most -degree polynomial.

(b) In a Galois Field, why does it make sense that we require p to be a prime? (Hint: look at the
properties of a field in note 8.)

(c) Use Lagrange interpolation to find a degree-2 polynomial that passes through these points in
GF(7): (0,1),(5,0),(6,2).

(d) Using Fermat’s Little Theorem, show that for every prime p, every polynomial over GF(p)
with degree ≥ p is equivalent to a polynomial of degree at most p−1. (Two polynomials are
equivalent if they evaluate to the same value for every x ∈ GF(p).

6 Rational Root Theorem
The rational root theorem states that for a polynomial

P(x) = anxn +an−1xn−1 + · · ·+a0,

a0, · · · ,an ∈ Z, if a0,an 6= 0, then for each rational solution p
q (gcd(p,q) = 1) p|a0 and q|an. Prove

the rational root theorem.
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