CS 70 Discrete Mathematics and Probability Theory Spring 2018 Babak Ayazifar and Satish Rao DIS 12B

1 Uniform Probability Space

Let $\Omega = \{1, 2, 3, 4, 5, 6\}$ be a uniform probability space. Let also $X(\omega)$ and $Y(\omega)$, for $\omega \in \Omega$, be the random variables defined in the table:

ω	1	2	3	4	5	6	$\mathbb{E}[\cdot]$
<i>X</i> (<i>ω</i>)	0	0	1	1	2	2	
$Y(\boldsymbol{\omega})$	0	2	3	5	2	0	
$X^2(\boldsymbol{\omega})$							
$Y^2(\boldsymbol{\omega})$							
$XY(\boldsymbol{\omega})$							
$L[Y \mid X](\boldsymbol{\omega})$							

Table 1: All the rows in the table correspond to random variables.

- (a) Fill in the blank entries of the table. In the column to the far right, fill in the expected value of the random variable.
- (b) Are the variables correlated or uncorrelated? Are the variables independent or dependent?
- (c) Calculate $\mathbb{E}[(Y L[Y | X])^2]$.

2 LLSE

We have two bags of balls. The fractions of red balls and blue balls in bag *A* are 2/3 and 1/3 respectively. The fractions of red balls and blue balls in bag *B* are 1/2 and 1/2 respectively. Someone gives you one of the bags (unmarked) uniformly at random. You then draw 6 balls from that same bag with replacement. Let X_i be the indicator random variable that ball *i* is red. Now, let us define $X = \sum_{1 \le i \le 3} X_i$ and $Y = \sum_{4 \le i \le 6} X_i$. Find $L(Y \mid X)$. *Hint*: Recall that

$$L(Y \mid X) = \mathbb{E}(Y) + \frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)} (X - \mathbb{E}(X)).$$

Also remember that covariance is bilinear.

3 Number of Ones

In this problem, we will revisit dice-rolling, except with conditional expectation.

(a) If we roll a die until we see a 6, how many ones should we expect to see?

(b) If we roll a die until we see a number greater than 3, how many ones should we expect to see?